🥑Python多语言欧拉法和预测校正器实现
Python | C++ | C# | Java | JavaScript | 欧拉法 | 数学 | 微分方程
📜流体力学电磁学运动学动力学化学和电路中欧拉法
📜流体力学电磁学运动学动力学化学和电路中欧拉法示例:Python重力弹弓流体晃动微分方程模型和交直流电阻电容电路
✒️多语言实现欧拉法和修正欧拉法
在数学和计算科学中,欧拉方法(也称为前向欧拉方法)是一种用于求解具有给定初值的常微分方程的一阶数值程序。考虑一个微分方程 ,初始条件为 ,则该方程的逐次逼近可由下式给出:
其中 , 表示步长。选择较小的  值会导致更准确的结果和更多的计算时间。
例如,考虑微分方程 ,初始条件为 ,步长为 。求。
解:
现在我们可以使用欧拉公式计算
类似地我们可以计算
Python实现:
 def func( x, y ):
     return (x + y + x * y)
     
 def euler( x0, y, h, x ):
     temp = -0
 
     while x0 < x:
         temp = y
         y = y + h * func(x0, y)
         x0 = x0 + h
 
     print("Approximate solution at x = ", x, " is ", "%.6f"% y)
     
 x0 = 0
 y0 = 1
 h = 0.025
 x = 0.1
 
 euler(x0, y0, h, x)
 C++实现:
 #include <iostream>
 using namespace std;
 
 float func(float x, float y)
 {
     return (x + y + x * y);
 }
 
 void euler(float x0, float y, float h, float x)
 {
     float temp = -0;
 
     while (x0 < x) {
         temp = y;
         y = y + h * func(x0, y);
         x0 = x0 + h;
     }
 
     cout << "Approximate solution at x = "
         << x << " is " << y << endl;
 }
 
 int main()
 {
 
     float x0 = 0;
     float y0 = 1;
     float h = 0.025;
 
     float x = 0.1;
 
     euler(x0, y0, h, x);
     return 0;
 }
 C#实现:
 using System;
 
 class GFG {
 
     static float func(float x, float y)
     {
         return (x + y + x * y);
     }
 
     static void euler(float x0, float y, float h, float x)
     {
 
         while (x0 < x) {
             y = y + h * func(x0, y);
             x0 = x0 + h;
         }
 
         Console.WriteLine("Approximate solution at x = "
                         + x + " is " + y);
     }
 
     public static void Main()
     {
 
         float x0 = 0;
         float y0 = 1;
         float h = 0.025f;
         float x = 0.1f;
 
         euler(x0, y0, h, x);
     }
 }Java实现:
 import java.io.*;
 
 class Euler {
     float func(float x, float y)
     {
         return (x + y + x * y);
     }
 
     void euler(float x0, float y, float h, float x)
     {
         float temp = -0;
         while (x0 < x) {
             temp = y;
             y = y + h * func(x0, y);
             x0 = x0 + h;
         }
 
         System.out.println("Approximate solution at x = "
                         + x + " is " + y);
     }
 
     public static void main(String args[]) throws IOException
     {
         Euler obj = new Euler();
         float x0 = 0;
         float y0 = 1;
         float h = 0.025f;
         float x = 0.1f;
 
         obj.euler(x0, y0, h, x);
     }
 }JavaScript实现:
 <script>
 
     function func(x, y)
     {
         return (x + y + x * y);
     }
 
     function euler(x0, y, h, x)
     {
         let temp = -0;
 
         while (x0 < x) {
             temp = y;
             y = y + h * func(x0, y);
             x0 = x0 + h;
         }
         document.write("Approximate solution at x = "
                         + x + " is " + y);
     }
 
     let x0 = 0;
     let y0 = 1;
     let h = 0.025;
 
     let x = 0.1;
 
     euler(x0, y0, h, x);
 
 </script>
 预测校正器或修正欧拉法
Python实现
 def f(x, y):
     v = y - 2 * x * x + 1;
     return v;
 
 def predict(x, y, h):
     
     y1p = y + h * f(x, y);
     return y1p;
 
 
 def correct(x, y, x1, y1, h):
     
 
     e = 0.00001;
     y1c = y1;
 
     while (abs(y1c - y1) > e + 1):
         y1 = y1c;
         y1c = y + 0.5 * h * (f(x, y) + f(x1, y1));
 
     return y1c;
 
 def printFinalValues(x, xn, y, h):
     while (x < xn):
         x1 = x + h;
         y1p = predict(x, y, h);
         y1c = correct(x, y, x1, y1p, h);
         x = x1;
         y = y1c;
 
 
     print("The final value of y at x =",
                     int(x), "is :", y);
 
 
 if __name__ == '__main__':
 
     x = 0; y = 0.5;
     xn = 1;
     h = 0.2;
 
     printFinalValues(x, xn, y, h);
 C++实现
 #include <bits/stdc++.h>
 using namespace std;
 
 double f(double x, double y)
 {
     double v = y - 2 * x * x + 1;
     return v;
 }
 
 double predict(double x, double y, double h)
 {
     double y1p = y + h * f(x, y);
     return y1p;
 }
 
 double correct(double x, double y,
             double x1, double y1,
             double h)
 {
 
     double e = 0.00001;
     double y1c = y1;
 
     do {
         y1 = y1c;
         y1c = y + 0.5 * h * (f(x, y) + f(x1, y1));
     } while (fabs(y1c - y1) > e);
 
     return y1c;
 }
 
 void printFinalValues(double x, double xn,
                     double y, double h)
 {
 
     while (x < xn) {
         double x1 = x + h;
         double y1p = predict(x, y, h);
         double y1c = correct(x, y, x1, y1p, h);
         x = x1;
         y = y1c;
     }
 
     cout << "The final value of y at x = "
         << x << " is : " << y << endl;
 }
 
 int main()
 {
     double x = 0, y = 0.5;
     double xn = 1;
     double h = 0.2;
 
     printFinalValues(x, xn, y, h);
 
     return 0;
 }
 C#实现
 using System;
 
 class GFG
 {
     
 static double f(double x, double y)
 {
     double v = y - 2 * x * x + 1;
     return v;
 }
 
 static double predict(double x, double y, double h)
 {
     double y1p = y + h * f(x, y);
     return y1p;
 }
 
 static double correct(double x, double y,
             double x1, double y1,
             double h)
 {
 
     double e = 0.00001;
     double y1c = y1;
 
     do
     {
         y1 = y1c;
         y1c = y + 0.5 * h * (f(x, y) + f(x1, y1));
     }
     while (Math.Abs(y1c - y1) > e);
 
     return y1c;
 }
 
 static void printFinalValues(double x, double xn,
                     double y, double h)
 {
 
     while (x < xn) 
     {
         double x1 = x + h;
         double y1p = predict(x, y, h);
         double y1c = correct(x, y, x1, y1p, h);
         x = x1;
         y = y1c;
     }
 
     Console.WriteLine("The final value of y at x = "+
                         x + " is : " + Math.Round(y, 5));
 }
 
 static void Main()
 {
 
     double x = 0, y = 0.5;
     double xn = 1;
     double h = 0.2;
 
     printFinalValues(x, xn, y, h);
 }
 }Java实现
 import java.text.*;
 
 class GFG
 {
 
 static double f(double x, double y)
 {
     double v = y - 2 * x * x + 1;
     return v;
 }
 
 static double predict(double x, double y, double h)
 {
     double y1p = y + h * f(x, y);
     return y1p;
 }
 
 static double correct(double x, double y,
                     double x1, double y1,
                     double h)
 {
     double e = 0.00001;
     double y1c = y1;
 
     do
     {
         y1 = y1c;
         y1c = y + 0.5 * h * (f(x, y) + f(x1, y1));
     }
     while (Math.abs(y1c - y1) > e);
 
     return y1c;
 }
 
 static void printFinalValues(double x, double xn,
                     double y, double h)
 {
 
     while (x < xn) 
     {
         double x1 = x + h;
         double y1p = predict(x, y, h);
         double y1c = correct(x, y, x1, y1p, h);
         x = x1;
         y = y1c;
     }
 
     DecimalFormat df = new DecimalFormat("#.#####");
     System.out.println("The final value of y at x = "+
                         x + " is : "+df.format(y));
 }
 
 public static void main (String[] args) 
 {
 
     double x = 0, y = 0.5;
     double xn = 1;
     double h = 0.2;
 
     printFinalValues(x, xn, y, h);
 }
 }
 JavaScript实现
 <script>
     function f(x , y) {
         var v = y - 2 * x * x + 1;
         return v;
     }
 
     function predict(x , y , h) {
         var y1p = y + h * f(x, y);
         return y1p;
     }
 
     function correct(x , y , x1 , y1 , h) {
 
         var e = 0.00001;
         var y1c = y1;
 
         do {
             y1 = y1c;
             y1c = y + 0.5 * h * (f(x, y) + f(x1, y1));
         } while (Math.abs(y1c - y1) > e);
         return y1c;
     }
 
     function printFinalValues(x , xn , y , h) {
 
         while (x < xn) {
             var x1 = x + h;
             var y1p = predict(x, y, h);
             var y1c = correct(x, y, x1, y1p, h);
             x = x1;
             y = y1c;
         }
 
         document.write("The final value of y at x = " + x + " is : " + y.toFixed(5));
     }
 
         var x = 0, y = 0.5;
         var xn = 1;
 
         var h = 0.2;
         printFinalValues(x, xn, y, h);
 </script>
 Last updated
Was this helpful?
