🧄Surface Integral to Volume Integral Conversion Using the Divergence Theorem
The closed surface integral is always zero because the curl of the position vector ( ) is always zero, a mathematical result that is physically consistent with vectors either being individually zero or cancelling each other out due to a surface's symmetry.
🎬Compare how vectors behave on a sphere and a cylinder
A zero result for a surface integral can be achieved either because all individual vectors are zero (as seen on the sphere), or because non-zero vectors cancel each other out due to symmetry (as seen on the cylinder).
🖊️Mathematical Proof
PreviousComputing the Integral of a Static Electromagnetic FieldNextCirculation Integral vs. Surface Integral
Last updated
Was this helpful?