šŸ„
Cross-Disciplinary Perspective
  • šŸµļøCross-Disciplinary Perspective
  • šŸµļøInterdisciplinary Perspective-å­¦éš›ēš„č¦–ē‚¹
    • šŸµļøMultifaceted Viewpoint
      • šŸµļøA Guide to Finite Difference, Finite Element, and Finite Volume Methods for PDEs plus AI Reasoning
        • 🧰Delving into the World of Partial Differential Equations
        • 🧰Navigating the Landscape of Numerical Methods for PDEs
        • 🧰Functional Analysis and Variational Methods for PDEs
        • 🧰The Algebraic Backbone of Numerical PDEs: Linear Algebra and Its Challenges
      • šŸµļøExploring the Landscape of Differential Equations plus AI Reasoning
        • 🧰The Intertwined Dance: Specific PDEs and the Mathematical Analysis Underpinning Them
        • 🧰Unlocking the Secrets of Elliptic Equations: A Journey Through Sobolev Spaces
        • 🧰Bridging Theory and Computation: Exploring the Realm of Numerical Methods for PDEs
        • 🧰Diving into the Realm of Functional Analysis: Hilbert Spaces and Operators
      • šŸµļøMathematical Structures Underlying Physical Laws plus AI Reasoning
      • šŸµļøSynthesizing Solutions: A Holistic View of Mechanical Design plus AI Reasoning
      • šŸµļøSeamless FPGA Integration: Building a UARTLite Driver for Linux with PCIe XDMA plus AI Analytics
      • šŸµļøAnalogue and Digital Signals plus AI Analytics
      • šŸµļøClinical Regression Analytics plus AI Reasoning
      • šŸµļøNonlinear Realities: Mapping the Landscape of Complex Systems plus AI Reasoning
      • šŸµļøEnd-to-End Power Electronics Modeling, Simulation, and Control plus AI Reasoning
      • šŸµļøBrains, Bots and Bayesian Belief plus AI Reasoning
      • šŸµļøExploring the Diverse Landscape of UAV Simulation Environments plus AI Expansion
      • šŸµļøFrom Physics to Prediction: A Structured Odyssey Through Data-Driven Deep Learning plus AI Reasoning
      • šŸµļøAnalyzing Dynamic Microscopy Data
      • šŸµļøBenchmarking the Battery Brains plus AI Expansion
      • šŸµļøThe Nitty-Gritty of Lead-Acid plus AI Expansion
      • šŸµļøDecoding Electrochemical Interactions plus AI Expansion
      • šŸµļøDecoding Lithium-Ion Battery Models plus AI Expansion
      • šŸµļøExtending the Charge for Battery Lifecycles plus AI Expansion
      • šŸµļøData-Powered Cells for Smarter Battery Gigafactories plus AI Expansion
      • šŸµļøOvercoming Data Processing Bottlenecks in Energy Storage plus AI Expansion
      • šŸµļøA Unified Approach to Binary Quadratic Model Solving plus AI Expansion
      • šŸµļøNumerical Diffraction for High-Intensity Lasers plus AI Expansion
      • šŸµļøExploring Quantum Disorder with Multi-GPU Computing plus AI Expansion
      • šŸµļøHarnessing AI for Physics plus AI Expansion
      • šŸµļøDecoding Deep Learning plus AI Reasoning
      • šŸµļøThe Computational Toolkit From Quantum Bits to Fractal Coastlines plus AI Reasoning
      • šŸµļøNeurocognitive Similarity Analysis-AI Insights
      • šŸµļøApplying DTW Across Time Series Domains-AI Insights
      • šŸµļøGround Motion Spatial Analysis-AI Insights
      • šŸµļøDrought Metrics & Analytics-AI Insights
      • šŸµļøTerrestrial Hydrological Processes-AI Insights
      • šŸµļøCorrelation Network Informatics-AI Insights
      • šŸµļøImmuno-Imaging Analytics in Action-AI Insights
      • šŸµļøComputational Strategies for STED Microscopy and Applications-AI Insights
      • šŸµļøBridging SPDEs, Neural Networks, and Advanced Mathematics-AI Insights
      • šŸµļøMathematical Modeling and Analysis of Signaling Pathways and Reaction Networks-AI Insights
      • šŸµļøNoise and Hysteresis in Gene Regulatory Networks-AI Insights
      • šŸµļøDelving into Battery Hysteresis-AI Insights
      • šŸµļøOptimizing Battery Performance Through Modeling and Simulation-AI Insights
      • šŸµļøAI's Economic Blind Spot plus AI Expansion
      • šŸµļøEcological Models plus AI Reasoning
      • šŸµļøElectrical Circuit Analysis plus AI Reasoning
      • šŸµļøThe Mathematics of Randomness and Order plus AI Reasoning
      • šŸµļøStructured Robotics plus AI Reasoning
      • šŸµļøThe Omega Function in Action plus AI Reasoning
      • šŸµļøMathematical Finance and Computational Methods plus AI Reasoning
      • šŸµļøQuantitative Financial Modeling and Risk Optimization plus AI Reasoning
      • šŸµļøAI & Speech Intelligence Ontology plus AI Reasoning
      • šŸµļøMatrix Algebra and Geometric Computations plus AI Reasoning
      • šŸµļøComputing Electrical Machines plus AI Reasoning
      • šŸµļøDiscrete & Conformal Geometric Structures plus AI Reasoning
      • šŸµļøThermodynamics and Phase Behavior plus AI Reasoning
      • šŸµļøLinear Analysis and Finite Element Applications plus AI Reasoning
      • šŸµļøGraph Theory and Algorithmic Structures plus AI Reasoning
      • šŸµļøComputational Fluid and Multiphase Dynamics plus AI Reasoning
      • šŸµļøBoltzmannSim explores Lattice Boltzmann Methods for Fluid Dynamics plus AI Reasoning
      • šŸµļøIntegrated Computational Materials Science and Phase-Field Modeling plus AI Reasoning
      • šŸµļøStatistical Dynamics and Analytical Modeling plus AI Reasoning
      • šŸµļøLight and Advanced Microscopy Techniques plus AI Reasoning
      • šŸµļøUnraveling Dynamics plus AI Reasoning
      • šŸµļøExploring Multibody Dynamics and Spatial Vector Theory plus AI Reasoning
      • šŸµļøCognitive Neuroscience and Learning Nexus plus AI Reasoning
      • šŸµļøStatistical Inference and Dynamical Systems Analysis plus AI Reasoning
      • šŸµļøMultiscale Modeling and Numerical Homogenization plus AI Reasoning
      • šŸµļøSensitivity Analysis and Uncertainty Quantification plus AI Reasoning
      • šŸµļøSimulating the Real World with AI plus AI Reasoning
      • šŸµļøStatistical and Computational Thermodynamics plus AI Reasoning
      • šŸµļøComputational Methods for Molecular Systems plus AI Reasoning
      • šŸµļøBeyond the Lens: Mastering Modern Microscopy plus AI Reasoning
      • šŸµļøNeurodynamical Systems and Computation plus AI Expansion
      • šŸµļøComputational Vision and Mathematical Structures plus AI Expansion
      • šŸµļøStatistical measures on neural features plus AI Expansion
      • šŸµļøGround-motion analysis with Bayes plus AI Expansion
      • šŸµļøTime Series and Dynamic Time Warping plus AI Expansion
      • šŸµļøGround-motion with statistical methods plus AI Expansion
      • šŸµļøHydrological data with statistical method plus AI Expansion
      • šŸµļøWater cycle simulation with statistical methods plus AI Expansion
      • šŸµļøThe Power of Non-parametric Spearman Correlation in Multiomics Analysis plus AI Expansion
      • šŸµļøBioElectroAnalysis plus AI Expansion
      • šŸµļøDecoding the Complexity of Lung Inflammation plus AI Expansion
      • šŸµļøMicroscopy Image Reconstruction Algorithm Models plus AI Expansion
      • šŸµļøThe Math of Stochasticity plus AI Expansion
      • šŸµļøOptical and Physical Concepts in Colloidal and Material Science plus AI Expansion
      • šŸµļøComputational Approaches for Single-Cell Data Analysis plus AI Expansion
      • šŸµļøComputational Materials Synthesis plus AI Expansion
      • šŸµļøAnalysis of Multistationarity in Reaction Networks plus AI Expansion
      • šŸµļøStochasticity in Biological Systems plus AI Expansion
      • šŸµļøDecoding Battery Behavior plus AI Expansion
      • šŸµļøPorous Electrodes in Batteries plus AI Expansion
      • šŸµļøMathematical Building Blocks plus AI Reasoning
      • šŸµļøComputational Algebra and Geometric Processing (CAGP) plus AI Reasoning
      • šŸµļøPolyhedral Computations Exploring Geometric Algorithms plus AI Reasoning
      • šŸµļøPatterns of Thought plus AI Reasoning
      • šŸµļøAI-Based Control of Electric Drives plus AI Reasoning
      • šŸµļøElectroanalytical Chemistry plus AI Reasoning
      • šŸµļøOptical and Physical Concepts in Colloidal and Material Science plus AI Expansion
    • šŸŒŠå­¦éš›ēš„č¦–ē‚¹
      • 🌊PDEć®ćŸć‚ć®ęœ‰é™å·®åˆ†ę³•ć€ęœ‰é™č¦ē“ ę³•ć€ęœ‰é™ä½“ē©ę³•ć®ę‰‹å¼•ććØAIęŽØč«–
        • šŸ§°åå¾®åˆ†ę–¹ēØ‹å¼ć®äø–ē•Œćøć®ęŽ¢ę±‚
        • šŸ§°åå¾®åˆ†ę–¹ēØ‹å¼ć«åÆ¾ć™ć‚‹ę•°å€¤č§£ę³•ć®åœ°å¹³ć‚’ę­©ć‚€
        • šŸ§°åå¾®åˆ†ę–¹ēØ‹å¼ć®ćŸć‚ć®é–¢ę•°č§£ęžćØå¤‰åˆ†ę³•
        • šŸ§°ę•°å€¤åå¾®åˆ†ę–¹ēØ‹å¼ć®ä»£ę•°ēš„éŖØę ¼ļ¼šē·šå½¢ä»£ę•°ćØćć®čŖ²é”Œ
      • šŸŒŠå¾®åˆ†ę–¹ēØ‹å¼ć®é¢Øę™Æć‚’ęŽ¢ć‚‹ćØAIęŽØč«–
      • šŸŒŠē‰©ē†ę³•å‰‡ć®ę ¹åŗ•ć«ć‚ć‚‹ę•°å­¦ēš„ę§‹é€ ćØAIęŽØč«–
      • šŸŒŠē„”äŗŗčˆŖē©ŗę©Ÿļ¼ˆUAVļ¼‰ć‚·ćƒŸćƒ„ćƒ¬ćƒ¼ć‚·ćƒ§ćƒ³ē’°å¢ƒć®å¤šę§˜ćŖēŠ¶ę³ć‚’ęŽ¢ć‚‹ćØAI拔張
      • šŸŒŠå‹•ēš„é”•å¾®é”ćƒ‡ćƒ¼ć‚æć®č§£ęžćØAI拔張
      • šŸŒŠć€Œćƒćƒƒćƒ†ćƒŖćƒ¼ć®é ­č„³ć€ć®ćƒ™ćƒ³ćƒćƒžćƒ¼ć‚­ćƒ³ć‚°ćØAI拔張
      • šŸŒŠé‰›é…øćƒćƒƒćƒ†ćƒŖćƒ¼ć®ę øåæƒćØAI拔張
      • šŸŒŠé›»ę°—åŒ–å­¦ēš„ē›øäŗ’ä½œē”Øć®č§£čŖ­ćØAI拔張
      • šŸŒŠćƒŖćƒć‚¦ćƒ ć‚¤ć‚Ŗćƒ³é›»ę± ćƒ¢ćƒ‡ćƒ«ć®č§£čŖ­ćØAI拔張
      • šŸŒŠćƒćƒƒćƒ†ćƒŖćƒ¼ćƒ©ć‚¤ćƒ•ć‚µć‚¤ć‚Æćƒ«ć®å»¶é•·ćØAI拔張
      • šŸŒŠćƒ‡ćƒ¼ć‚æé§†å‹•åž‹ć‚»ćƒ«ć«ć‚ˆć‚‹ć‚¹ćƒžćƒ¼ćƒˆćŖćƒćƒƒćƒ†ćƒŖćƒ¼ć‚®ć‚¬ćƒ•ć‚”ć‚ÆćƒˆćƒŖćƒ¼ćØAI拔張
      • šŸŒŠć‚Øćƒćƒ«ć‚®ćƒ¼č²Æč”µć«ćŠć‘ć‚‹ćƒ‡ćƒ¼ć‚æå‡¦ē†ć®ćƒœćƒˆćƒ«ćƒćƒƒć‚Æå…‹ęœćØAI拔張
      • šŸŒŠäŗŒä¹—äŗŒå€¤ćƒ¢ćƒ‡ćƒ«ć®č§£ę³•ćøć®ēµ±äø€ēš„ć‚¢ćƒ—ćƒ­ćƒ¼ćØAI拔張
      • šŸŒŠé«˜å¼·åŗ¦ćƒ¬ćƒ¼ć‚¶ćƒ¼ć®ćŸć‚ć®ę•°å€¤å›žęŠ˜ćØAI拔張
      • šŸŒŠč¤‡ę•°GPUć‚³ćƒ³ćƒ”ćƒ„ćƒ¼ćƒ†ć‚£ćƒ³ć‚°ć«ć‚ˆć‚‹é‡å­ē„”ē§©åŗē³»ć®ęŽ¢ę±‚ćØAI拔張
      • 🌊AI を物理学に擻用するとAI拔張
      • 🌊AIć®ēµŒęøˆēš„ē›²ē‚¹ćØAI拔張
      • šŸŒŠē„žēµŒåŠ›å‹•ć‚·ć‚¹ćƒ†ćƒ ćØčØˆē®—ćØAI拔張
      • šŸŒŠę•°ē†ę§‹é€ ć«åŸŗć„ćčØˆē®—č¦–č¦šćØAI拔張
      • šŸŒŠå˜äø€ē“°čƒžćƒ‡ćƒ¼ć‚æč§£ęžć®ćŸć‚ć®čØˆē®—ć‚¢ćƒ—ćƒ­ćƒ¼ćƒćØAI拔張
      • šŸŒŠčØˆē®—ęę–™åˆęˆćØAI拔張
      • šŸŒŠē”Ÿē‰©ć‚·ć‚¹ćƒ†ćƒ ć«ćŠć‘ć‚‹ē¢ŗēŽ‡ę€§ćØAI拔張
      • šŸŒŠé›»ę± ęŒ™å‹•ć®č§£ę˜ŽćØAI拔張
      • šŸŒŠę©Ÿę¢°čØ­čØˆć®å…Øä½“åƒļ¼šēµ±åˆēš„ć‚½ćƒŖćƒ„ćƒ¼ć‚·ćƒ§ćƒ³ć®ę§‹ēÆ‰ćØAIęŽØč«–
      • šŸŒŠč‡ØåŗŠå›žåø°åˆ†ęžćØAIęŽØč«–
      • šŸŒŠéžē·šå½¢ćŖē¾å®Ÿļ¼šč¤‡é›‘ćŖć‚·ć‚¹ćƒ†ćƒ ć®ę™Æč¦³ć‚’åœ°å›³åŒ–ć™ć‚‹ćØAIęŽØč«–
      • šŸŒŠć‚Øćƒ³ćƒ‰ćƒ„ćƒ¼ć‚Øćƒ³ćƒ‰ć®ćƒ‘ćƒÆćƒ¼ć‚Øćƒ¬ć‚Æćƒˆćƒ­ćƒ‹ć‚Æć‚¹ćƒ¢ćƒ‡ćƒŖćƒ³ć‚°ć€ć‚·ćƒŸćƒ„ćƒ¬ćƒ¼ć‚·ćƒ§ćƒ³ć€åˆ¶å¾”ćØAIęŽØč«–
      • šŸŒŠč„³ć€ćƒœćƒƒćƒˆć€ćć—ć¦ćƒ™ć‚¤ć‚ŗć®äæ”åæµćØAIęŽØč«–
      • šŸŒŠē‰©ē†ć‹ć‚‰äŗˆęø¬ćøļ¼šćƒ‡ćƒ¼ć‚æé§†å‹•åž‹ę·±å±¤å­¦ēæ’ć«ć‚ˆć‚‹ę§‹é€ åŒ–ć•ć‚ŒćŸęŽ¢ę±‚ćØAIęŽØč«–
      • šŸŒŠę·±å±¤å­¦ēæ’ć‚’č§£ćę˜Žć‹ć™ćØAIęŽØč«–
      • šŸŒŠé‡å­ćƒ“ćƒƒćƒˆć‹ć‚‰ćƒ•ćƒ©ć‚Æć‚æćƒ«ęµ·å²øē·šć¾ć§ć®čØˆē®—ćƒ„ćƒ¼ćƒ«ć‚­ćƒƒćƒˆćØAIęŽØč«–
      • šŸŒŠē”Ÿę…‹å­¦ēš„ćƒ¢ćƒ‡ćƒ«ćØAIęŽØč«–
      • šŸŒŠé›»ę°—å›žč·Æč§£ęžćØAIęŽØč«–
      • šŸŒŠå¶ē„¶ę€§ćØē§©åŗć®ę•°å­¦ćØAIęŽØč«–
      • šŸŒŠę§‹é€ åŒ–ćƒ­ćƒœćƒ†ć‚£ć‚Æć‚¹ćØAIęŽØč«–
      • šŸŒŠä½œē”Øäø­ć®ć‚Ŗćƒ”ć‚¬é–¢ę•°ćØAIęŽØč«–
      • šŸŒŠę•°ē†ćƒ•ć‚”ć‚¤ćƒŠćƒ³ć‚¹ćØčØˆē®—ę‰‹ę³•ćØAIęŽØč«–
      • 🌊AIćØéŸ³å£°ēŸ„čƒ½ć‚Ŗćƒ³ćƒˆćƒ­ć‚øćƒ¼ćØAIęŽØč«–
      • šŸŒŠč”Œåˆ—ä»£ę•°ćØå¹¾ä½•čØˆē®—ćØAIęŽØč«–
      • šŸŒŠé›»ę°—ę©Ÿę¢°ć®čØˆē®—ćØAIęŽØč«–
      • šŸŒŠé›¢ę•£ćƒ»å…±å½¢å¹¾ä½•ę§‹é€ ćØAIęŽØč«–
      • šŸŒŠē†±åŠ›å­¦ćØē›øęŒ™å‹•ćØAIęŽØč«–
      • šŸŒŠē·šå½¢č§£ęžćØęœ‰é™č¦ē“ ę³•åæœē”ØćØAIęŽØč«–
      • šŸŒŠć‚°ćƒ©ćƒ•ē†č«–ćØć‚¢ćƒ«ć‚“ćƒŖć‚ŗćƒ ę§‹é€ ćØAIęŽØč«–
      • šŸŒŠčØˆē®—ęµä½“ćŠć‚ˆć³å¤šē›øęµä½“åŠ›å­¦ćØAIęŽØč«–
      • 🌊BoltzmannSimć«ć‚ˆć‚‹ęµä½“å‹•åŠ›å­¦ć®ćŸć‚ć®ę ¼å­ćƒœćƒ«ćƒ„ćƒžćƒ³ę³•ć®ęŽ¢ę±‚ćØAIęŽØč«–
      • šŸŒŠēµ±åˆčØˆē®—ęę–™ē§‘å­¦ćØē›øå “ćƒ¢ćƒ‡ćƒ«ć€ćć—ć¦AIęŽØč«–
      • šŸŒŠēµ±čØˆåŠ›å­¦ćØč§£ęžćƒ¢ćƒ‡ćƒŖćƒ³ć‚°ćØAIęŽØč«–
      • šŸŒŠå…‰ćØé«˜åŗ¦ćŖé”•å¾®é”ęŠ€č”“ćØAIęŽØč«–
      • šŸŒŠćƒ€ć‚¤ćƒŠćƒŸć‚Æć‚¹ć®č§£ę˜ŽćØAIęŽØč«–
      • šŸŒŠå¤šä½“å‹•åŠ›å­¦ćØē©ŗé–“ćƒ™ć‚Æćƒˆćƒ«ē†č«–ć®ęŽ¢ę±‚ćØAIęŽØč«–
      • šŸŒŠčŖēŸ„ē„žēµŒē§‘å­¦ćØå­¦ēæ’ć®ēµć³ć¤ććØAIęŽØč«–
      • šŸŒŠēµ±čØˆēš„ęŽØč«–ćØåŠ›å­¦ē³»č§£ęžćØAIęŽØč«–
      • šŸŒŠćƒžćƒ«ćƒć‚¹ć‚±ćƒ¼ćƒ«ćƒ¢ćƒ‡ćƒŖćƒ³ć‚°ćØę•°å€¤ēš„å‡č³ŖåŒ–ćØAIęŽØč«–
      • šŸŒŠę„Ÿåŗ¦åˆ†ęžćØäøē¢ŗć‹ć•å®šé‡åŒ–ćØAIęŽØč«–
      • 🌊AIć«ć‚ˆć‚‹ē¾å®Ÿäø–ē•Œć®ć‚·ćƒŸćƒ„ćƒ¬ćƒ¼ć‚·ćƒ§ćƒ³ćØAIęŽØč«–
      • šŸŒŠēµ±čØˆēš„ćŠć‚ˆć³čØˆē®—ē†±åŠ›å­¦ćØAIęŽØč«–
      • šŸŒŠåˆ†å­ē³»ć®ćŸć‚ć®čØˆē®—ę‰‹ę³•ćØAIęŽØč«–
      • šŸŒŠćƒ¬ćƒ³ć‚ŗć®å‘ć“ć†å“ļ¼šē¾ä»£é”•å¾®é”ęŠ€č”“ć®ēæ’å¾—ćØAIęŽØč«–
      • šŸŒŠę•°å­¦ēš„ę§‹ęˆč¦ē“ ćØAIęŽØč«–
      • šŸŒŠčØˆē®—ä»£ę•°ćØå¹¾ä½•å­¦ēš„å‡¦ē†ćØAIęŽØč«–
      • šŸŒŠå¤šé¢ä½“čØˆē®—ļ¼šå¹¾ä½•å­¦ć‚¢ćƒ«ć‚“ćƒŖć‚ŗćƒ ćØAIęŽØč«–ć®ęŽ¢ę±‚
      • šŸŒŠę€č€ƒć®ćƒ‘ć‚æćƒ¼ćƒ³ćØAIęŽØč«–
      • šŸŒŠé›»ę°—ćƒ‰ćƒ©ć‚¤ćƒ–ć®AIćƒ™ćƒ¼ć‚¹åˆ¶å¾”ćØAIęŽØč«–
      • šŸŒŠé›»ę°—åˆ†ęžåŒ–å­¦ćÆćØAIęŽØč«–
      • šŸŒŠć‚³ćƒ­ć‚¤ćƒ‰ćŠć‚ˆć³ęę–™ē§‘å­¦ć«ćŠć‘ć‚‹å…‰å­¦ēš„ćŠć‚ˆć³ē‰©ē†ēš„ę¦‚åæµćØAI拔張
      • šŸŒŠē¢ŗēŽ‡č«–ć®ę•°å­¦ćØAI拔張
      • šŸŒŠé”•å¾®é”ē”»åƒå†ę§‹ęˆć‚¢ćƒ«ć‚“ćƒŖć‚ŗćƒ ćƒ¢ćƒ‡ćƒ«ćØAI拔張
      • šŸŒŠč‚ŗć®ē‚Žē—‡ć®č¤‡é›‘ę€§ć®č§£čŖ­ćØAI拔張
      • šŸŒŠē”Ÿä½“é›»ę°—åˆ†ęžćØAI拔張
      • šŸŒŠćƒžćƒ«ćƒć‚ŖćƒŸć‚Æć‚¹č§£ęžć«ćŠć‘ć‚‹ćƒŽćƒ³ćƒ‘ćƒ©ćƒ”ćƒˆćƒŖćƒƒć‚ÆćŖć‚¹ćƒ”ć‚¢ćƒžćƒ³ē›øé–¢ć®åŠ›ćØAI拔張
      • šŸŒŠēµ±čØˆēš„ę‰‹ę³•ć‚’ē”Øć„ćŸę°“å¾Ŗē’°ć‚·ćƒŸćƒ„ćƒ¬ćƒ¼ć‚·ćƒ§ćƒ³ćØAI拔張
      • 🌊Bayesć‚’ē”Øć„ćŸå¼·éœ‡å‹•č§£ęžćØAI拔張
      • šŸŒŠēµ±čØˆēš„ę‰‹ę³•ć‚’ē”Øć„ćŸę°“ę–‡ćƒ‡ćƒ¼ć‚æćØAI拔張
      • šŸŒŠēµ±čØˆēš„ę‰‹ę³•ć‚’ē”Øć„ćŸåœ°éœ‡å‹•ćØAI拔張
      • šŸŒŠę™‚ē³»åˆ—ćØćƒ€ć‚¤ćƒŠćƒŸćƒƒć‚Æć‚æć‚¤ćƒ ćƒÆćƒ¼ćƒ”ćƒ³ć‚°ćØAI拔張
      • šŸŒŠé›»ę± ć«ćŠć‘ć‚‹å¤šå­”č³Ŗé›»ę„µćØAI拔張
      • šŸŒŠååæœćƒćƒƒćƒˆćƒÆćƒ¼ć‚Æć«ćŠć‘ć‚‹å¤šå®šåøøę€§ć®č§£ęžćØAI拔張
      • šŸŒŠē„žēµŒē‰¹å¾“ć®ēµ±čØˆēš„č©•ä¾”ćØAI拔張
      • šŸŒŠå®šé‡ēš„é‡‘čžćƒ¢ćƒ‡ćƒŖćƒ³ć‚°ćØćƒŖć‚¹ć‚Æęœ€é©åŒ–ćØAIęŽØč«–
    • šŸŖ”äŗšå›¾č·Øé™…
      • šŸŖ”åå¾®åˆ†ę–¹ēØ‹ę•°å€¼ę–¹ę³•ęŒ‡å—åŠAIęŽØē†
      • šŸŖ”ęŽ¢ē“¢å¾®åˆ†ę–¹ēØ‹ēš„é¢†åŸŸåŠAIęŽØē†
      • šŸŖ”ē‰©ē†å®šå¾‹ēš„ę•°å­¦ē»“ęž„åŸŗē”€åŠAIęŽØē†
      • šŸŖ”ē»¼åˆč§£å†³ę–¹ę”ˆļ¼šęœŗę¢°č®¾č®”ēš„ę•“ä½“č§‚åŠAIęŽØē†
      • šŸŖ”äø“åŗŠå›žå½’åˆ†ęžåŠAIęŽØē†
      • šŸŖ”éžēŗæę€§ēŽ°å®žļ¼šē»˜åˆ¶å¤ę‚ē³»ē»Ÿēš„å›¾ę™ÆåŠAIęŽØē†
      • šŸŖ”ē«Æåˆ°ē«Æē”µåŠ›ē”µå­å»ŗęØ”ć€ä»æēœŸäøŽęŽ§åˆ¶åŠAIęŽØē†
      • šŸŖ”å¤§č„‘ć€ęœŗå™ØäŗŗäøŽč“å¶ę–Æäæ”åæµåŠAIęŽØē†
      • šŸŖ”ęŽ¢ē“¢ę— äŗŗęœŗęØ”ę‹ŸēŽÆå¢ƒēš„å¤šå…ƒę™Æč±”åŠAI拓展
      • šŸŖ”ä»Žē‰©ē†åˆ°é¢„ęµ‹ļ¼šę•°ę®é©±åŠØēš„ę·±åŗ¦å­¦ä¹ ēš„ē»“ęž„åŒ–ęŽ¢ē“¢åŠAIęŽØē†
      • šŸŖ”åŠØę€ę˜¾å¾®é•œę•°ę®åˆ†ęžåŠAI拓展
      • šŸŖ”ē”µę± å¤§č„‘ēš„åŸŗå‡†ęµ‹čÆ•åŠAI拓展
      • šŸŖ”é“…é…øē”µę± ēš„ē»†ęžęœ«čŠ‚åŠAI拓展
      • šŸŖ”ē”Ÿę€ęØ”åž‹åŠAIęŽØē†
      • šŸŖ”č§£ē ē”µåŒ–å­¦ē›øäŗ’ä½œē”ØåŠAI拓展
      • šŸŖ”å»¶é•æē”µę± åÆæå‘½ēš„å……ē”µåŠAI拓展
      • šŸŖ”ę•°ę®é©±åŠØēš„ę™ŗčƒ½ē”µę± č¶…ēŗ§å·„åŽ‚åŠAI拓展
      • šŸŖ”å…‹ęœå‚Øčƒ½é¢†åŸŸēš„ę•°ę®å¤„ē†ē“¶é¢ˆåŠAI拓展
      • šŸŖ”čƒ¶ä½“å’Œęę–™ē§‘å­¦äø­ēš„å…‰å­¦äøŽē‰©ē†ę¦‚åæµåŠAI拓展
      • šŸŖ”ē”µę± äø­ēš„å¤šå­”ē”µęžåŠAI拓展
      • šŸŖ”č§£čÆ»ē”µę± č”ŒäøŗåŠAI拓展
      • šŸŖ”ē”Ÿē‰©ē³»ē»Ÿäø­ēš„éšęœŗę€§åŠAI拓展
      • šŸŖ”ååŗ”ē½‘ē»œäø­å¤šēØ³ę€ēš„åˆ†ęžåŠAI拓展
      • šŸŖ”č®”ē®—ęę–™åˆęˆåŠAI拓展
      • šŸŖ”č®”ē®—ę–¹ę³•åœØå•ē»†čƒžę•°ę®åˆ†ęžäø­ēš„åŗ”ē”ØåŠAI拓展
      • šŸŖ”éšęœŗę€§ēš„ę•°å­¦åŠAI拓展
      • šŸŖ”ę˜¾å¾®é•œå›¾åƒé‡å»ŗē®—ę³•ęØ”åž‹åŠAI拓展
      • šŸŖ”č§£ē č‚ŗéƒØē‚Žē—‡ēš„å¤ę‚ę€§åŠAI拓展
      • šŸŖ”ē”Ÿē‰©ē”µåŒ–å­¦åˆ†ęžåŠAI拓展
      • šŸŖ”éžå‚ę•° Spearman ē›øå…³åœØå¤šē»„å­¦åˆ†ęžäø­ēš„åŠ›é‡åŠAI拓展
      • šŸŖ”åŸŗäŗŽē»Ÿč®”ę–¹ę³•ēš„ę°“å¾ŖēŽÆęØ”ę‹ŸåŠAI拓展
      • šŸŖ”åŸŗäŗŽē»Ÿč®”ę–¹ę³•ēš„ę°“ę–‡ę•°ę®åˆ†ęžåŠAI拓展
      • šŸŖ”åŸŗäŗŽē»Ÿč®”ę–¹ę³•ēš„åœ°éœ‡åŠØåˆ†ęžåŠAI拓展
      • šŸŖ”ę—¶é—“åŗåˆ—äøŽåŠØę€ę—¶é—“č§„ę•“åŠAI拓展
      • šŸŖ”åŸŗäŗŽč“å¶ę–Æę–¹ę³•ēš„åœ°éœ‡åŠØåˆ†ęžåŠAI拓展
      • šŸŖ”ē„žē»ē‰¹å¾ēš„ē»Ÿč®”åŗ¦é‡åŠAI拓展
      • šŸŖ”č®”ē®—č§†č§‰äøŽę•°å­¦ē»“ęž„åŠAI拓展
      • šŸŖ”ē„žē»åŠØåŠ›å­¦ē³»ē»ŸäøŽč®”ē®—åŠAI拓展
      • šŸŖ”äŗŗå·„ę™ŗčƒ½ēš„ē»ęµŽē›²ē‚¹åŠAI拓展
      • šŸŖ”äŗŒå…ƒäŗŒę¬”ęØ”åž‹ę±‚č§£ēš„ē»Ÿäø€ę–¹ę³•åŠAI拓展
      • šŸŖ”é«˜å¼ŗåŗ¦ęæ€å…‰ēš„ę•°å€¼č”å°„åŠAI拓展
      • šŸŖ”åˆ©ē”Øå¤šGPUč®”ē®—ęŽ¢ē“¢é‡å­ę— åŗåŠAI拓展
      • šŸŖ”åˆ©ē”Øäŗŗå·„ę™ŗčƒ½é©¾é©­ē‰©ē†å­¦åŠAI拓展
      • šŸŖ”č§£ē ę·±åŗ¦å­¦ä¹ åŠAIęŽØē†
      • šŸŖ”ä»Žé‡å­ęÆ”ē‰¹åˆ°åˆ†å½¢ęµ·å²øēŗæļ¼šč®”ē®—å·„å…·ē®±åŠAIęŽØē†
      • šŸŖ”ē”µč·Æåˆ†ęžåŠAIęŽØē†
      • šŸŖ”ę•°å­¦éšęœŗę€§äøŽåŗåŠAIęŽØē†
      • šŸŖ”ē»“ęž„åŒ–ęœŗå™Øäŗŗå­¦åŠAIęŽØē†
      • šŸŖ”ę•°å­¦åŸŗēŸ³åŠAIęŽØē†
      • šŸŖ”ę¬§ē±³čŒ„å‡½ę•°ēš„åŗ”ē”ØåŠAIęŽØē†
      • šŸŖ”ę•°å­¦é‡‘čžå­¦äøŽč®”ē®—ę–¹ę³•åŠAIęŽØē†
      • šŸŖ”åŸŗäŗŽäŗŗå·„ę™ŗčƒ½ēš„ē”µęœŗé©±åŠØęŽ§åˆ¶åŠAIęŽØē†
      • šŸŖ”ę€ē»“ęØ”å¼åŠAIęŽØē†
      • šŸŖ”å¤šé¢ä½“č®”ē®—ęŽ¢ē“¢å‡ ä½•ē®—ę³•åŠAIęŽØē†
      • šŸŖ”č®”ē®—ä»£ę•°äøŽå‡ ä½•å¤„ē†åŠAIęŽØē†
      • šŸŖ”é‡åŒ–é‡‘čžå»ŗęØ”äøŽé£Žé™©ä¼˜åŒ–åŠAIęŽØē†
      • šŸŖ”äŗŗå·„ę™ŗčƒ½äøŽčÆ­éŸ³ę™ŗčƒ½ęœ¬ä½“č®ŗåŠAIęŽØē†
      • šŸŖ”ēŸ©é˜µä»£ę•°äøŽå‡ ä½•č®”ē®—åŠAIęŽØē†
      • šŸŖ”ē”µęœŗč®”ē®—åŠAIęŽØē†
      • šŸŖ”ē¦»ę•£äøŽå…±å½¢å‡ ä½•ē»“ęž„åŠAIęŽØē†
      • šŸŖ”ēƒ­åŠ›å­¦äøŽē›øč”ŒäøŗåŠAIęŽØē†
      • šŸŖ”ēŗæę€§åˆ†ęžäøŽęœ‰é™å…ƒåŗ”ē”ØåŠAIęŽØē†
      • šŸŖ”å›¾č®ŗäøŽē®—ę³•ē»“ęž„åŠAIęŽØē†
      • šŸŖ”č®”ē®—ęµä½“äøŽå¤šē›øåŠØåŠ›å­¦åŠAIęŽØē†
      • šŸŖ”åˆ©ē”Øę ¼å­ēŽ»å°”å…¹ę›¼ę–¹ę³•čæ›č”Œęµä½“åŠØåŠ›å­¦ęØ”ę‹ŸåŠAIęŽØē†
      • šŸŖ”č®”ē®—ęę–™ē§‘å­¦äøŽē›øåœŗå»ŗęØ”åŠAIęŽØē†
      • šŸŖ”ē»Ÿč®”åŠØåŠ›å­¦äøŽåˆ†ęžå»ŗęØ”åŠAIęŽØē†
      • šŸŖ”å…‰å­¦åŠå‰ę²æę˜¾å¾®ęŠ€ęœÆåŠAIęŽØē†
      • šŸŖ”č§£ęžåŠØę€åŠAIęŽØē†
      • šŸŖ”ęŽ¢ē“¢å¤šä½“åŠØåŠ›å­¦äøŽē©ŗé—“å‘é‡ē†č®ŗåŠAIęŽØē†
      • šŸŖ”č®¤ēŸ„ē„žē»ē§‘å­¦äøŽå­¦ä¹ ęž¢ēŗ½åŠAIęŽØē†
      • šŸŖ”ē»Ÿč®”ęŽØę–­äøŽåŠØåŠ›ē³»ē»Ÿåˆ†ęžåŠAIęŽØē†
      • šŸŖ”å¤šå°ŗåŗ¦å»ŗęØ”äøŽę•°å€¼å‡åŒ€åŒ–åŠAIęŽØē†
      • šŸŖ”ēµę•åŗ¦åˆ†ęžäøŽäøē”®å®šę€§é‡åŒ–åŠAIęŽØē†
      • šŸŖ”å°†äŗŗå·„ę™ŗčƒ½åŗ”ē”ØäŗŽēŽ°å®žäø–ē•ŒęØ”ę‹ŸåŠAIęŽØē†
      • šŸŖ”ē»Ÿč®”å’Œč®”ē®—ēƒ­åŠ›å­¦åŠAIęŽØē†
      • šŸŖ”č®”ē®—åˆ†å­ä½“ē³»ēš„ę–¹ę³•åŠAIęŽØē†
      • šŸŖ”č¶…č¶Šé•œå¤“ļ¼šęŽŒę”ēŽ°ä»£ę˜¾å¾®é•œęŠ€ęœÆåŠAIęŽØē†
      • šŸŖ”ē”µåˆ†ęžåŒ–å­¦åŠAIęŽØē†
      • šŸŖ”ē„žē»č®¤ēŸ„ē›øä¼¼ę€§åˆ†ęžåŠAIę“žåÆŸ
      • šŸŖ”ę—¶é—“åŗåˆ—é¢†åŸŸåŗ”ē”ØDTW及AIę“žåÆŸ
      • šŸŖ”åœ°éœ‡åŠØē©ŗé—“åˆ†ęžåŠAIę“žåÆŸ
      • šŸŖ”å¹²ę—±ęŒ‡ę ‡äøŽåˆ†ęžåŠAIę“žåÆŸ
      • šŸŖ”é™†åœ°ę°“ę–‡čæ‡ēØ‹åŠAIę“žåÆŸ
      • šŸŖ”ē›øå…³ē½‘ē»œäæ”ęÆå­¦åŠAIę“žåÆŸ
      • šŸŖ”å…ē–«å½±åƒåˆ†ęžēš„å®žč·µåŠAIę“žåÆŸ
      • 🪔STEDę˜¾å¾®é•œēš„č®”ē®—ē­–ē•„åŠå…¶åŗ”ē”ØåŠAIę“žåÆŸ
      • šŸŖ”čæžęŽ„éšęœŗåå¾®åˆ†ę–¹ēØ‹ć€ē„žē»ē½‘ē»œäøŽé«˜ē­‰ę•°å­¦åŠAIę“žåÆŸ
      • šŸŖ”äæ”å·é€šč·Æå’Œååŗ”ē½‘ē»œēš„ę•°å­¦å»ŗęØ”äøŽåˆ†ęžåŠAIę“žåÆŸ
      • šŸŖ”åŸŗå› č°ƒęŽ§ē½‘ē»œäø­ēš„å™Ŗå£°äøŽę»žåŽåŠAIę“žåÆŸ
      • šŸŖ”ę·±å…„ęŽ¢č®Øē”µę± ę»žåŽåŠAIę“žåÆŸ
      • šŸŖ”é€ščæ‡å»ŗęØ”å’Œä»æēœŸä¼˜åŒ–ē”µę± ę€§čƒ½åŠAIę“žåÆŸ
      • šŸŖ”å½’ę”£
        • šŸ“åˆ›å®¢ē‰©čÆ­ | Craft
          • šŸ“Python(C_Cpp)åˆ†ęžęØ”ę‹ŸArduino和Raspberry Pi(å•ęæęœŗ)CANę€»ēŗæå’Œč½¦č½½å•å…ƒęµ‹čÆ•
          • šŸ“PythončæœēØ‹SSH和HTTPč§†é¢‘ęµēŗ§č”åˆ†ē±»Raspberry Pi ęœŗå™Øäŗŗ
          • šŸ“Rasberry Pi Pico(RP2040ęæ) C_Cpp及Pythonå¾®åž‹ęœŗå™Øå­¦ä¹ 
          • šŸ“MATLAB_ESP32ęœ‰é™č„‰å†²å“åŗ”FIRę— é™č„‰å†²å“åŗ”IIR滤波器
          • šŸ“Node-RED(Raspberry Pi)ä¼ ę„Ÿå™ØMQTTå’Œäŗ‘
          • šŸ“Arduino Cloud ęž„å»ŗę°”ä½“ę£€ęµ‹ē³»ē»Ÿ
          • šŸ“ESP32 MicroPythonęø©ę¹æåŗ¦åŠäŗŒę°§åŒ–ē¢³
          • šŸ“Arduino和MATLABäø²å£é€šč®ÆåŠē›“ęµ-ę­„čæ›ē”µęœŗęŽ§åˆ¶
          • šŸ“Arduino 和Edge ImpulsečæåŠØęœŗå™Øå­¦ä¹ OLEDę˜¾ē¤ŗčæåŠØåē§°
          • šŸ“ESP8266 ē®€å•é‚®ä»¶ä¼ č¾“åč®®(SMTP)传输邮件
          • šŸ“Arduinoå¤ščŠ‚ē‚¹LoRaåŒå‘é€šč®Æå’Œäø»čŠ‚ē‚¹OLED显示
          • šŸ“STM32温湿度LoRa ESP8266 WiFi äøŠä¼ ę‰‹ęœŗē«Æę•°ę®ē›‘ęŽ§
          • šŸ“Arduino和Jetson Nano(ꈖRaspberry Pi) ęœŗå™Øäŗŗę“ä½œē³»ē»Ÿ ROS čæœēØ‹(电脑端_ę‰‹ęœŗē«Æ)ē§»åŠØå¾®åž‹č½¦å’ŒSLAM(åŒę—¶å®šä½å’Œę˜ å°„)
          • šŸ“Python_OpenCV_TensorFlowå¾®åž‹ä»æēœŸę·±åŗ¦å­¦ä¹  Raspberry Pi č‡ŖåŠØé©¾é©¶č½¦
          • šŸ“ArduinoęƒÆę€§ęµ‹é‡å•å…ƒęÆ”ä¾‹ē§Æåˆ†å¾®åˆ†(PID)č‡Ŗå¹³č””ē§»åŠØč½®
          • šŸ“MSP432ē„žē»ē½‘ē»œęŽØē†čÆ­éŸ³čÆ†åˆ«(č”ŒåŠØå’Œåœę­¢)
          • šŸ“ESP32ę‰‹ęœŗē«Æé¢éƒØčÆ†åˆ«
          • šŸ“Arduino_LoRa(RESTful API_MQTTē‰©č”ē½‘ęœåŠ”å™Ø_GPS追踪器)
          • šŸ“Arduinoäø‰ē›øäŗ¤ęµē”µåŽ‹ęµ‹é‡LCD显示
          • šŸ“MSP432 和 Arduino ęƒÆę€§ęµ‹é‡å•å…ƒå¾®åž‹ęœŗå™Øå­¦ä¹ åœ°å½¢čÆ†åˆ«
          • šŸ“MSP432 和 Arduino ęœŗå™Øå­¦ä¹ čÆ­éŸ³å‘½ä»¤čÆ†åˆ«é©±åŠØå°č½¦
          • šŸ“Arduino č“ē‰™Håž‹ę”„ē›“ęµé©±åŠØå°č½¦
          • šŸ“Python和Javaé€»č¾‘åˆ†ęžä»ŖFPGA(VHDL和Verilog)
          • šŸ“Arduino和Raspberry Piå¹³é¢ä½ē½®ęŒ‡ē¤ŗå™Ø
          • šŸ“Arduino和ESP8266ę°“ē”µå­ē”µåÆ¼ēŽ‡č®”ē®—ę€»ęŗ¶č§£å›ŗä½“
          • šŸ“ESP32ꈖArduinoåæƒē”µå›¾č“ē‰™å’Œę— ēŗæē½‘ē»œē›‘ęŽ§
          • šŸ“Raspberry Pi(Python) MQTTäøŠä¼ ęø©ę¹æåŗ¦č‡³äŗ‘ē«Æ
          • šŸ“Raspberry Pi åŠØę€ēƒ­ęˆåƒ(ēƒ­åƒä»Ŗ)
          • šŸ“ESP32äøŠēš„Node.JSčŠå¤©ęœåŠ”å™Ø
          • šŸ“Raspberry Pi和Python Web ꔆꞶBottleęŽ§åˆ¶ē›“ęµē”µęœŗå’Œęø©ę¹æåŗ¦
          • šŸ“ESP32ęæč½½LoRaå¾®åž‹é„ęµ‹å®šä½ē³»ē»Ÿ
          • šŸ“Arduinoč€³é—“ę—¶å·®å£°éŸ³å®šä½å’ŒåÆ¼å‘
          • šŸ“LabVIEWå®žę—¶ē›‘ęµ‹å’Œē»˜åˆ¶å•ę™¶å…‰ä¼ęæē”µåŽ‹ē”µęµå’Œčƒ½č€—č¶‹åŠæ
          • šŸ“ESP32(Arduino)和Raspberry Pi(Node-RED)LoRa和ESP-NOWå¤§čŒƒå›“ę•°ę®é€šč®Æäø­ē»§ē³»ē»Ÿ
          • šŸ“Arduinoęµä½“åŠ›å­¦ē‡ƒę²¹ę•ˆēŽ‡č®”
          • šŸ“Python讔算Arduinoå£°éŸ³ę–¹å‘čŒƒå›“å’Œē»˜åˆ¶å£°éŸ³ä½ē½®äŗŒē»“ę¦‚ēŽ‡åˆ†åøƒēƒ­å›¾
          • šŸ“STM32运蔌Rustęµ‹é‡ęø©ę¹æåŗ¦ęµ·ę‹”å’Œę°”åŽ‹
          • šŸ“Python和MATLAB绘制ESP8266 Raspberry Pi代理MQTTę¶ˆęÆę•°ę®
          • šŸ“Arduinoč“ē‰™å°č½¦
          • šŸ“MicroPythonē½‘ē»œęœåŠ”å™ØęŽ§åˆ¶ESP32/ESP8266
          • šŸ“Raspberry Pi和Arduinoęž„å»ŗé«˜ēŗ§åŠŸčƒ½ēš„åŸŗęœ¬ęœŗå™Øäŗŗ
          • šŸ“ESP8266测试Wi-Fié€šč®Æå®‰å…Ø
          • šŸ“Arduinoę³¢å½¢å‘ē”Ÿå™Ø
          • šŸ“MATLABč“ē‰™é€šč®ÆArduino
          • šŸ“MATLABē»˜åˆ¶å®žę—¶ęø©åŗ¦ę›²ēŗæ
          • šŸ“ESP8266čæžęŽ„STM32åˆ›å»ŗē½‘ē»œęœåŠ”å™Ø
          • šŸ“Arduinoę±½č½¦é€Ÿåŗ¦ę£€ęµ‹å™Ø
          • šŸ“ä½æē”ØVerilog HDL在FPGAäøŠčæ›č”Œå›¾åƒå¤„ē†
          • šŸ“Arduino čæ·ä½ ęø©å®¤ęŽ§åˆ¶
          • šŸ“ESP8266访问MySQL
          • šŸ“BlynkęŽ§åˆ¶ESP8266温湿度
          • šŸ“Raspberry PičæœēØ‹ę–½ę°“ē›‘ęŽ§ē³»ē»Ÿ
          • šŸ“Raspberry PiäŗŒę°§åŒ–ē¢³ē™¾åˆ†ęÆ”ęµ‹é‡
          • šŸ“Arduinoęøøęˆé”¹ē›®ā€“ Arduinoēš„Flappy Bird复制品
          • šŸ“Arduinoé¢œč‰²åˆ†ē±»å™Ø
          • šŸ“Arduino旋转编码器
          • šŸ“Arduinoę—¶é’ŸLCD显示
          • šŸ“Arduinoę•°ę®č®°å½•č‡³Excel
          • šŸ“Arduinoč§¦ę‘øå±MP3éŸ³ä¹ę’­ę”¾å™Øå’Œé—¹é’Ÿé”¹ē›®
          • šŸ“Arduinoå®‰å…Øå’Œč­¦ęŠ„
          • šŸ“Arduinoę— ēŗæé€šäæ”ā€“ NRF24L01教程
          • šŸ“Androidč“ē‰™Arduino LED矩阵
          • šŸ“Arduinoē‰ˆRFID门锁
          • šŸ“ArduinočæœēØ‹ę— ēŗæé€šäæ”
          • šŸ“Arduinoē›“ęµē”µęœŗ
          • šŸ“Arduino和Androidč“ē‰™ę— ēŗæčæœēØ‹ęŽ§åˆ¶ę±½č½¦
          • šŸ“Arduinoč‡ŖåŠØå”®č“§ęœŗ
          • šŸ“ArduinoęŽ§åˆ¶LED灯带
          • šŸ“Arduinoęµ‹č·ä»Ŗå’Œę°“å¹³ä»Ŗ
          • šŸ“Arduinoå¹³ē§»å’Œå€¾ę–œē”µåŠØē›øęœŗę»‘å—
          • šŸ“Arduino多个NRF24L01ęØ”å—ę— ēŗæē½‘ē»œ
        • šŸ„‘ē¼–ēØ‹ē¢ŽčÆ­ | Code
          • šŸ„‘Pythonå¤ščÆ­čØ€ę¬§ę‹‰ę³•å’Œé¢„ęµ‹ę ”ę­£å™Øå®žēŽ°
          • šŸ„‘Pythonę··ę·†ēŸ©é˜µē”Øä¾‹
          • šŸ„‘Pythonč››ē½‘å›¾åÆč§†åŒ–å‡½ę•°čæ­ä»£
          • šŸ„‘C++ę•°ē†é€»č¾‘å®šä¹‰å’Œå®žēŽ°ęˆåƒę•ę‰åŠäŗ¤äŗ’å¼å˜å½¢
          • šŸ„‘Pythonå¤§åž‹ę•°ę®é›†(GPU)åÆč§†åŒ–å’ŒPillowč§£é‡Šę€§č§†č§‰ęŽØē†åŠęę–™ē²’å­å‡čš
          • šŸ„‘PythonåÆč§†åŒ–ę¦‚ēŽ‡ē»Ÿč®”å’Œčšē±»å­¦ä¹ åˆ†ęžē”Ÿē‰©ęŒ‡ēŗ¹
          • šŸ„‘Cppå¤šę øå¼€å‘å’Œå¹¶č”Œč®”ē®—CUDA_OpenMP_OpenCL
          • šŸ„‘CPU和GPU(C代码)å¹¶č”Œč®”ē®—åŠäŗŒē»“ē½‘ę ¼ēƒ­ä¼ č¾“
          • šŸ„‘Pythonē½‘ē»œåč®®å’Œę¼ę“žē”„åˆ«ē½‘ē»œå®‰å…Øä¹‹äŗŒ
          • šŸ„‘Pythonē½‘ē»œč®¾å¤‡čæžęŽ„å’Œé…ē½®å·„å…·ē½‘ē»œå®‰å…Øä¹‹äø€
          • šŸ„‘PythonäøŖäŗŗē”Ÿäŗ§åŠ›ē»ˆē«Æēœ‹ęæåŗ”ē”ØēØ‹åŗ
          • šŸ„‘Pythonå—…ęŽ¢å’Œč§£ęžē½‘ē»œę•°ę®åŒ…
          • šŸ„‘React Node.js 和 Prisma ęž„å»ŗå…Øę ˆę”†ęž¶
          • šŸ„‘wxPython异歄等待示例
          • šŸ„‘Raspberry PięŽ§åˆ¶wxPythonä»Ŗč”Øē›˜
          • šŸ„‘wxPythonäø­é¢ęæåˆ‡ę¢
          • šŸ„‘PythonäŗŒę°§åŒ–ē¢³äæ”ęÆå›¾č”Ø
          • šŸ„‘Streamlit分列嵌儗 Python ę•°ę®åÆč§†åŒ–
          • šŸ„‘Python_WebSocketęœåŠ”å™Øå’ŒPython_JavaScript客户端
          • šŸ„‘Pythonåœ°ē†ē©ŗé—“ Web åŗ”ē”ØēØ‹åŗ
          • šŸ„‘Python和C++é€šē”ØčÆ­éŸ³čÆ†åˆ«ęØ”åž‹
          • šŸ„‘Pythonęœē“¢åŸŗå› äø­ē‰¹å®šåÆ†ē å­
          • šŸ„‘Kotliné¢å‘åÆ¹č±”ē¼–ēØ‹å’ŒAndroid开发
          • šŸ„‘Pythonę•°ę®ä»Ŗč”ØęæStreamlitåÆč§†åŒ–åœ°éœ‡ę•°ę®
          • šŸ„‘Pythonäŗ‹ä»¶é©±åŠØå’Œę”„ęŽ„C/C++äø“äøšē¼–ēØ‹
          • šŸ„‘Numbaę˜ å°„Python代码至CUDA内核
          • šŸ„‘PythonåŠØē”»åÆč§†åŒ–ęŽ’åŗē®—ę³•(冒泔-ę’å…„-选ꋩ-堆-shell-合并-åæ«é€Ÿ)
          • šŸ„‘C++(CMake)视觉OpenCV-Raspberry Piå›¾åƒå¤„ē†-3Då›¾åƒé‡å»ŗ-é¢éƒØē•Œę ‡ę£€ęµ‹-å·ē§Æē„žē»ē½‘ē»œč½¦ē‰Œč‡ŖåŠØčÆ†åˆ«-ę·±åŗ¦ē„žē»ē½‘ē»œé¢éƒØę£€ęµ‹å’ŒčÆ†åˆ«
          • šŸ„‘C++(CMake)视觉OpenCVę»¤é•œ-č‡ŖåŠØå…‰å­¦ę£€ęµ‹-åÆ¹č±”åˆ†ē±»č·ŸčøŖ-čƒŒę™Æå»ŗęØ”å’Œå½¢ę€å­¦ę“ä½œ-ę–‡ęœ¬čÆ†åˆ«åˆ†å‰²ē®—ę³•
          • šŸ„‘Pythonå®¢ęˆ·ē«Æå‘åøƒč®¢é˜…MQTTäŗ‘ä»£ē†ę¶ˆęÆ
          • šŸ„‘Python和Kafkaäŗ¤äŗ’å¼geoJSONåœ°ē†ē‰¹å¾ē¤ŗä¾‹
          • šŸ„‘Pythonåˆ›å»ŗę•°å­¦åŠØē”»
          • šŸ„‘Dash 嵌兄 Flask App
          • šŸ„‘Jupyter Labäø­ēš„GPUä»Ŗč”Øęæ
          • šŸ„‘ä½æē”ØPython Tkinterēš„å‰Ŗåˆ€ēŸ³å¤“åøƒęøøęˆ
          • šŸ„‘åœØRaspberry PiäøŠä½æē”ØPySimpleGUIåˆ›å»ŗå›¾č”Ø
          • šŸ„‘PySimpleGUI ā€“åæ«é€Ÿē®€ä¾æēš„ē•Œé¢
          • šŸ„‘ä½æē”ØFlutteręŽ§åˆ¶č“ē‰™é€šč®Æ
          • šŸ„‘Pythonē‰ˆSocketļ¼ˆå„—ęŽ„å­—ļ¼‰åŗ”ē”Ø-å®¢ęˆ·ē«Æå’ŒęœåŠ”å™Ø
          • šŸ„‘Python使用Reportlab处理PDFę•°ę®
          • šŸ„‘Flutter App
          • šŸ„‘Pythonåˆå­¦č€…ē»ƒę‰‹é”¹ē›®
          • šŸ„‘Pythonę•°ę®äŗ¤äŗ’å¼åÆč§†åŒ–
          • šŸ„‘é€č§†Matplotlib
          • šŸ„‘Python_OpenCV(ę»¤é•œ_ę·±åŗ¦ä¼ ę„Ÿå™Ø_ē‰¹å¾åŒ¹é…_č§†č§‰č·ŸčøŖčÆ†åˆ«_åˆ†ē±»)及其C++ArUco标记姿态讔算
          • šŸ„‘Pythonå”é€šåŒ–ē…§ē‰‡
          • šŸ„‘Pythonäŗ¤äŗ’å¼Webåŗ”ē”ØēØ‹åŗ
          • šŸ„‘SimpleCVå½¢ēŠ¶åˆ†ē±»ę£€ęµ‹
          • šŸ„‘Pythonē”ŸęˆéŸ³ä¹ę³¢
          • šŸ„‘Plotly和Flaskē½‘é”µåÆč§†åŒ–
          • šŸ„‘ä½æē”ØBeautiful Soup和Requestsēˆ¬ē½‘
          • šŸ„‘Flutterę£€ęµ‹å›¾åƒå’Œå®žę—¶ē›øęœŗęµäø­åÆ¹č±”
          • šŸ„‘Streamlitęž„å»ŗęœŗå™Øå­¦ä¹ ęØ”åž‹ē•Œé¢
          • šŸ„‘SpaCy 和 Flask API ęž„å»ŗ Python å‘½åå®žä½“č‡ŖåŠØęå–å™Ø
        • šŸ«ęœŗå™Øå­¦ä¹  | Machine Learning
          • 🫐Python和C++及MATLABä½Žęø©ē£ę€ęœŗå™Øå­¦ä¹ ęØ”åž‹
          • 🫐Pythonå…‰ē”µå…‰åÆ¹å…‰ē„žē»ē½‘ē»œéžē›øå¹²å…‰å›¾åƒä½Žē»“ę˜ å°„ęØ”ę‹Ÿ
          • 🫐Pythonē„žē»ęØ”åž‹čÆ„ä¼°å¾®åˆ†ę–¹ēØ‹å›¾ē®—ę³•
          • 🫐Pythonäæ„ē½—ę–Æę–¹å—åÆę“ēŗµå·ē§Æåˆ†ē±» | ēØ€ē–č¾ØčÆ†ē®—ę³• | å¾®åˆ†ę–¹ēØ‹ē„žē»ę±‚č§£å™Ø
          • 🫐Pythonå‘ē„ØåˆåŒ | č§£ē¼ ę³Øę„åŠ›čÆ­čØ€ęØ”åž‹
          • 🫐Pythonč®°åæ†ē»„åˆé€ę˜Žåŗ¦čÆ­čØ€ęØ”åž‹
          • 🫐PyCaret(Pythonč‡ŖåŠØåŒ–ęœŗå™Øå­¦ä¹ )č‡Ŗå®šä¹‰äŗ¤äŗ’å¼č§£é‡Šę€§ęØ”åž‹
          • 🫐Pythoné—ä¼ ē¼–ēØ‹čæåŠØęµ‹čÆ•å’Œč®”åˆ’č°ƒåŗ¦å®‰ęŽ’ä¹‹äø€
          • 🫐AutoKeras(Pythonč‡ŖåŠØåŒ–ęœŗå™Øå­¦ä¹ )å¤šęØ”ę€ę•°ę®å’Œå¤šä»»åŠ”
          • 🫐Pythonę¦‚ēŽ‡å»ŗęØ”ē®—ę³•å’Œå›¾ē¤ŗ
          • 🫐Pythonę·±åŗ¦å­¦ä¹ é¢„ęµ‹å€å‘ØęœŸåˆ†å²”ļ¼ˆéø”åæƒč„ē»†čƒžčšé›†ä½“č‡Ŗå‘č·³åŠØļ¼‰
          • 🫐TensorFlowäŗŒå…ƒ-多类-å¤šę ‡ē­¾åˆ†ē±»ē¤ŗä¾‹
          • 🫐Python使用OpenAI å’Œå¤§åž‹čÆ­čØ€ęØ”åž‹åÆ¹čÆPDFå’Œå›¾åƒę–‡ęœ¬
          • 🫐TensorFlow(Python | Keras)äŗŗå·„ē„žē»ē½‘ē»œ(ANN)å›žå½’ęØ”åž‹-ę‰¾å‡ŗęę–™čŽ·å¾—č¶…åÆ¼ē‰¹ę€§ēš„ęø©åŗ¦å’Œåˆ†ē±»ęØ”åž‹-åŒŗåˆ†ē»“åˆå‰‚/éžē»“åˆå‰‚åˆ†å­å±žę€§
          • 🫐Python和Streamlitę— ēŗæē½‘ē»œäŗŗå·„ę™ŗčƒ½å®‰å…ØčÆ„ä¼°ę”†ęž¶
          • 🫐Pythonå£°å­¦ē‰¹å¾ē„žē»ē½‘ē»œęž„å»ŗåŒŗåŸŸå“åŗ¦å›¾
          • 🫐Python(ē®€åŒ–åˆ†å­ēŗæę€§č¾“å…„)å·ē§Æē½‘ē»œåø•ę‹‰å”žå°”č‹ę–Æå…¬ē†é¢„ęµ‹åŒ–å­¦ē‰©ęÆ’ę€§
          • 🫐PythončÆ­ä¹‰č½¬åÆ¼åŒå‘ē¼–ē č”Øå¾å’ŒspaCy(å‘½åå®žä½“čÆ†åˆ«å’Œę–‡ęœ¬åˆ†ē±»)ęå–ę—…ęøøäæ”ęÆ
          • 🫐Pythonę˜¾å¾®å¤–å‘Øč”€ē»†čƒžå›¾åƒå¢žå¼ŗé¢œč‰²å˜ę¢4ē§å¤šå±‚ę„ŸēŸ„åˆ†ē±»å™Ø
          • 🫐PythonęŽ¢ē“¢ę€§ę•°ę®åˆ†ęž(EDA)čÆ­éŸ³ę•°ę®å»ŗęØ”
          • 🫐Python脑电图(EEG)é’å…‰ēœ¼å³ę—¶čÆŠę–­ē„žē»ē½‘ē»œęØ”åž‹
          • 🫐Raspberry Pi和Python-OpenCV-TensorFlowå·ē§Æē„žē»ē½‘ē»œēƒ­ęˆåƒäŗŗē‰©ę£€ęµ‹
          • 🫐Raspberry Pi和Python OpenCVäŗŗå·„ē„žē»ē½‘ē»œå’Œå·ē§Æē„žē»ē½‘ē»œę¼”ē¤ŗåŠå…¶ęœŗå™Øå­¦ä¹ å¾®åž‹ę”†ęž¶
          • 🫐Pythonč§†ē½‘č†œå…‰å­¦ē›øå¹²ę–­å±‚ę‰«ęē—…ē†å­¦åˆ†ē±»
          • 🫐Pythonę—¶é—“åŗåˆ—ę¢Æåŗ¦ęå‡ęØ”åž‹é¢„ęµ‹ä¼˜åŒ–å…±äŗ«å•č½¦č°ƒåŗ¦
          • 🫐Pythonę—¶é—“åŗåˆ—ē»Ÿč®”ęØ”åž‹č‡Ŗå›žå½’é¢„ęµ‹ē½‘ē»œęµé‡
          • 🫐Pythonę—¶é—“åŗåˆ—scikit-learnå›žå½’é¢„ęµ‹ē”µåŠ›éœ€ę±‚
          • 🫐PyTorch(Python)训练MNISTęØ”åž‹ē§»åŠØē«ÆIOSäøŠä½æē”ØSwiftå®žę—¶ę•°å­—čÆ†åˆ«
          • 🫐Pythoné¢„ęµ‹čˆ¹åŖé˜»åŠ›4ē§ę–¹ę³•ēŗæę€§å›žå½’å†³ē­–ę ‘ē„žē»ē½‘ē»œå’ŒKęœ€čæ‘é‚»
          • šŸ«ä½æē”Ø TensorFlow 和 Flask 部署 Keras å›¾åƒåˆ†ē±»å·ē§Æē„žē»ē½‘ē»œęØ”åž‹
          • 🫐PlatformIO运蔌ESP32 TensorFlow Lite
          • 🫐Python和NumPyē®€ę˜“ę·±åŗ¦å­¦ä¹ č®­ē»ƒčžŗę—‹ę•°ę®
          • 🫐PyTorch(Python)č‚ŗē™Œę·±åŗ¦å­¦ä¹ ęØ”åž‹č®­ē»ƒå’ŒFlaskåŗ”ē”ØéƒØē½²
        • šŸŒ¶ļøęŠ€ęœÆé˜”é™Œ | Crisscross
          • šŸŒ¶ļøLaTexåˆ›å»ŗå•†äøšå’Œē§‘å­¦ę–‡ęœ¬
        • šŸ„„äŗ¤čžč“Æé€š | Intersection
          • 🄄Pythonč‡Ŗå‡†ē›“ä»ŖåŒē­’ęœ›čæœé•œå…‰å­¦ABCDēŸ©é˜µč”Œäøŗē®—ę³•
          • 🄄Pythonęˆåƒč“Øč°±ęµå¼ē»†čƒžęœÆē—…ē†ē”Ÿē†å­¦
          • 🄄Python | C++ | MATLAB | Julia | R åø‚åœŗęµåŠØę€§ę•°å­¦é¢„ęœŸčÆ„ä¼°é‡
          • 🄄PythonęµåŠØę€§åšåø‚é£Žé™©čŽ·åˆ© | äæ”ęÆäøåÆ¹ē§°ä¹°å–ę•°å­¦ęØ”åž‹
          • 🄄Pythonē‰›åø‚ē†Šåø‚ęØŖē›˜ęœŗåˆ¶ | ē¼ŗå£åˆ†ęž | å¤“åÆøč°ƒę•“ē®—ę³•
          • 🄄Python和C++ē»„å­¦ę•°ę®DNA和RNA
          • 🄄PythonåµŒå…„å¼ē‰‡äøŠē³»ē»Ÿé€»č¾‘ē”µč·Æåˆ†ęžč°ƒåˆ¶ē‰©ē†äæ”å·
          • 🄄C++č®”ē®—čµ„ęœ¬åø‚åœŗę”¶ē›ŠåŠęˆęœ¬åˆ†é…ę•°å­¦ę–¹ēØ‹
          • 🄄C++和Pythonč®”ē®—é‡‘čžę•°å­¦ę–¹ēØ‹ē®—ę³•ęØ”åž‹
          • 🄄Pythonē‰©ē†é‡å’ŒåŒ–å­¦é‡ę•°å€¼č®”ē®—
          • 🄄MATLAB和Pythonę•°å€¼å’Œē¬¦å·č®”ē®—åÆč§†åŒ–ē‰©ē†å­¦ę°”ä½“åŠØčƒ½å’Œē²’å­é€Ÿåŗ¦
          • 🄄Python和MATLABę•°å­—äæ”å·ę³¢å½¢å’ŒęØ”åž‹ęØ”ę‹Ÿ
          • 🄄Pythonč’øå‘ę•£ē‰©ē†é—®é¢˜(å¾®ē§Æåˆ†-线性代数-ę‹‰ę™®ę‹‰ę–Æå’Œå‚…ē«‹å¶å˜ę¢)
          • 🄄Pythonåœ°ē†ę•°ę®ęœŗå™Øå­¦ä¹ ę•°å­¦
          • 🄄Python_Tkinter和OpenCVęØ”ę‹Ÿč”Œę˜Ÿå‡Œę—„ä¼ č¾“å…‰åŗ¦ęµ‹å®š
          • 🄄Pythonå†œč‰ŗå­¦åœŸå£¤ē»Ÿč®”ę•°å€¼
          • 🄄Python和MatLabęØ”ę‹Ÿē²’å­åŠØåŠ›ē³»ē»Ÿ
          • 🄄Pythonē»å…øēƒ­åŠ›å­¦ę•°å€¼åˆ†ęž
          • 🄄Python和Juliaēŗæę€§ä»£ę•°ļ¼ˆēŸ¢é‡ēŸ©é˜µęœ€å°äŗŒä¹˜ļ¼‰
          • 🄄PythonåÆ¹ē§°å’ŒéžåÆ¹ē§°åŠ åÆ†ē®—ę³•åŠē½‘ä¼ č¾“å±‚å®‰å…Ø(TLS)
          • 🄄Pythonå¾®ē§Æåˆ†ę¦‚ēŽ‡ē»Ÿč®”å’Œå›¾å½¢č®ŗåŠå‡ ä½•å­¦å®žēŽ°
          • 🄄Pythonę°“åŠ›å­¦å’Œę°“ę–‡å­¦åŗ”ē”Ø
          • 🄄Pythonäø»ęˆåˆ†åˆ†ęž(ē®€åŒ–åˆ†å­ēŗæę€§č¾“å…„)åŒ–å­¦åˆ†å­ē»“ęž„
          • 🄄PythonåÆ†ē ēŗæę€§ę–¹ēØ‹ē»„å’Œé¢‘ēŽ‡åˆ†ęž
          • 🄄Pythonč’™ē‰¹å”ę“›ē®—ę³•å…‰å­¦ę•°ę®ęØ”åž‹éžå¼¹ę€§ę•£å°„ęØ”ę‹Ÿ
          • 🄄Pythonē”µē½‘é™ę€å’Œå‡†é™ę€åˆ†ęžåŠč‡ŖåŠØåŒ–ä¼˜åŒ–
          • 🄄Python和Matplotlibē”µē£äø€ē»“äŗŒē»“äø‰ē»“ęØ”ę‹Ÿ
          • 🄄Rå¤§ę•°å®šå¾‹(Pythonåˆ‡ęÆ”é›Ŗå¤«äøē­‰å¼éŖŒčÆå¤§ę•°å®šå¾‹)ęØ”ę‹Ÿåœ†å‘ØēŽ‡
          • 🄄Pythonę•°å€¼å’Œåå¾®åˆ†ę–¹ēØ‹č§£
          • 🄄MATLAB和Python数值讔算
          • 🄄Pythonęµä½“åŠØåŠ›å­¦å…±å½¢ę˜ å°„åŗ“åŸƒē‰¹å¼ęµ
          • 🄄MATLABē„žē»å½±åƒå­¦ę•°ę®ēš„å¤šęØ”ę€å¤šå…ƒęØ”å¼åˆ†ęžę–¹ę³•
          • 🄄Pythonå”å°”ę›¼ę•°å­—ę»¤ę³¢(ēŗæę€§äŗŒę¬”ä¼°č®”)äø€ē»“å’Œå¤šē»“ä¼ ę„Ÿå™Øęµ‹é‡
          • 🄄Pythonä»æēœŸäŗŒēŗ§ä¾›åŗ”é“¾ęµ‹čÆ•å®‰å…Øåŗ“å­˜ęØ”åž‹
          • 🄄PythonęØ”ę‹Ÿå¤§åž‹č›‹ē™½č“Øē»“ęž„äøŽē»†čƒžč†œēš„ē›øäŗ’ä½œē”Ø
          • 🄄Python和OpenCVå›¾ē‰‡å‚…é‡Œå¶å˜ę¢å…‰ēŗæē…§å°„_č¾¹ę”†å¤„ē†å’ŒKmeansé¢œč‰²é‡åŒ–
          • 🄄Pythonå®žēŽ°åœ†å½¢é¼“é¢å£°ę³¢åŠØē”»ē¤ŗä¾‹
          • šŸ„„é¢‘ē§»é”®ęŽ§ļ¼ˆFSK)用Pythonč§£é‡Š
          • šŸ„„å£°ę³¢ēš„ę—¶åŸŸå’Œé¢‘åŸŸPythonå®žēŽ°ē¤ŗä¾‹
          • 🄄Pythonå®žēŽ°č°ę³¢ęÆ”ļ¼ŒęŽę²™č‚²ę›²ēŗæå’Œę­£äŗ¤é˜»å°¼ę‘†ē»˜åˆ¶
          • 🄄PythonęØ”ę‹Ÿę¦‚ēŽ‡ē»Ÿč®”ęœŗå™Øå­¦ä¹ 
          • 🄄MATLABäøŽPython数值讔算
          • 🄄Python对比MATLABę³¢åŠØę•°ę®åˆ†ęžä¼˜åŠæ
          • 🄄Python交互MATLABé¢„ęµ‹ę•°ę®ē»“ęžœ
          • 🄄Pythonę•°å­—äæ”å·å¤„ē†
          • 🄄Pythonē»Ÿč®”ęŽØę–­
          • 🄄PythonåÆč§†åŒ–å’ŒåŠØē”»ęØ”ę‹Ÿē‰©ē†
          • 🄄Pythonę•°å­¦å·„å…·é‡‘čžåˆ†ęž
          • 🄄Pythonę•°ę®ęŒ–ęŽ˜å’Œč§£ęžē®—ę³•
          • 🄄Python数值算法片段
          • 🄄Pythonē‰©ē†ę•°å€¼č§£ęž
          • 🄄Pythonč§£åå¾®åˆ†ę–¹ēØ‹
          • 🄄LabVIEW和MATLABē®—ę³•ä¼˜åŒ–
          • 🄄Python和Rå•†äøšę•°ę®ęŒ–ęŽ˜åˆ†ęžęŠ€å·§
          • 🄄Python 和 R ę•°ę®åˆ†ęžå’Œå»ŗęØ”ęŠ€å·§
          • 🄄Python 和 R č„é”€ę•°ę®åˆ†ęž
          • 🄄Pythonē‰©ē†åŠ›å­¦ę•°å€¼åˆ†ęž
          • šŸ„„å®žéŖŒē‰©ē†äø­ä½æē”Ø Python ę•°ę®åˆ†ęž
          • 🄄Pythonęµä½“åŠØåŠ›å­¦å±‚ęµå»ŗęØ”
          • šŸ„„ęµä½“åŠ›å­¦ē¤ŗä¾‹ Python åˆ†ęž
          • 🄄Pythonęœ‰é™ä½“ē§Æęµä½“å¼€å°”ę–‡-äŗ„å§†éœå…¹äøēØ³å®šę€§
          • 🄄Pythonę—¶é—“åŗåˆ—é¢„ęµ‹å¤§ę°”äŗŒę°§åŒ–ē¢³ęµ“åŗ¦
          • 🄄Pythonč’™ē‰¹å”ę“›ē›øå…³å˜é‡SciPyęØ”ę‹Ÿ
          • 🄄PythonäŗŒē»“ē”µē£é€†ę•£å°„ē®—ę³•
          • 🄄Visual Studio Code 编辑 Java 和 OpenCVåˆ©ē”ØYOLO DNN å®žēŽ° Raspberry Pi å›¾åƒę£€ęµ‹å’Œåˆ†ęž
          • 🄄Python é„ę„Ÿåœ°ē†ē©ŗé—“ę•°ę®åˆ†ęž
          • 🄄MATLAB和Pythonē”µē£å­¦ę•°å€¼åˆ†ęž
          • 🄄Python绘制LTspiceä»æēœŸč¶‹åŠæå›¾
          • 🄄PythonéŸ³ä¹äæ”å·å¤„ē†å’Œē†č®ŗåÆč§†åŒ–
          • 🄄PythonéŸ³ä¹åˆęˆå™Ø
        • šŸ„¬åµŒå…„å¼ | Embedded
          • 🄬Python和MATLABå¾®ęœŗē”µå„åŗ·ęŽØåÆ¼ē®—ę³•å’Œē³»ē»ŸęØ”ę‹Ÿä¼˜åŒ–č®¾č®”
          • 🄬C++和Pythončš‚čšę¬é£Ÿå’ŒčšŠč™«č¶‹å…‰ę€§å’Œęµ®ę ‡ęœŗē¾¤č”Œäøŗē®—ę³•ē„žē»ē½‘ē»œ
          • 🄬Arduinoē”Ÿē‰©ę³¢åé¦ˆå’ŒēŽÆå¢ƒę£€ęµ‹å¤–å„—
          • 🄬PythonåµŒå…„å¼åŠØę€ē”Øęˆ·č°ƒåˆ¶č§£č°ƒå“åŗ”å¼å°„é¢‘äæ”å·
          • 🄬RISC-Vå•ęæč®”ē®—ęœŗęØ”ę‹Ÿå’ŒFPGAęæå¤šę øIPå®žēŽ°
          • 🄬ROS2(CppꈖPython)ęœŗå™Øå­¦ä¹ č·Æå¾„é€‰ę‹©äø‰ē»“ęØ”ę‹Ÿå¹³č””č½¦åŠYOLOv8č§†č§‰ę¶ˆęÆ
          • 🄬CppꈖPython(ROS2)ęœ‰é™ēŠ¶ę€ęœŗ-č”Œäøŗę ‘ę•°å­¦ęØ”åž‹åŠč™šę‹ŸåŠ›åœŗęœ¬åœ°åÆ¼čˆŖē®—ę³•éæéšœ
          • 🄬Cpp(Python)和MATLAB差动驱动ROS Raspberry Piå…ØåŠŸčƒ½ęœŗå™ØäŗŗåŽŸåž‹
          • šŸ„¬å•ęæč®”ē®—ęœŗ(SBC)-ē‰‡äøŠē³»ē»Ÿ(SOC)嵌兄式Cpp和FPGA(VHDL)
          • 🄬Arduino和MPLAB X 开发STM32F103和PIC16F15376
          • 🄬FRDM‐K64Få¼€å‘ęæ ARM Mbed åœØēŗæē¼–čÆ‘å™ØåµŒå…„å¼å’Œē‰©č”ē½‘å¼€å‘
          • 🄬C Cpp和Pythonå®žēŽ°STM32F4å®žę—¶ę“ä½œē³»ē»Ÿ(FreeRTOS)åøå°˜å™Ø
          • 🄬Qtå›ŗä»¶ę˜ åƒ Raspberry Pi 嵌兄式C++(Qt)编程
          • šŸ„¬åˆ›å»ŗESP32开源WiFi MAC(ä»‹č“Øč®æé—®ęŽ§åˆ¶)层
          • 🄬Verilogč§†é¢‘äæ”å·å›¾å½¢ę˜¾ē¤ŗ FPGA(iCE40)
          • 🄬C11ē¼–å†™ē®€ę˜“16ä½č™šę‹Ÿęœŗ
          • 🄬uPyCraft IDEå®‰č£…å’Œåˆ·ę–°ESP32和ESP8266固件
          • 🄬STM32F4(Keil uVision)åµŒå…„å¼åŗ“åŠŸčƒ½
          • 🄬Arduino LoRaęœåŠ”å™Øē‚¹åÆ¹ē‚¹Raspberry Pi LoRa客户端
          • 🄬STM32ęŽ„å£ESP8266 WiFi 安卓MQTT客户端柄询温度
          • 🄬ESP8266 ęØ”å—å’Œéœå°”ę•ˆåŗ”ä¼ ę„Ÿå™ØMQTTē›‘ęµ‹ę°“ęµé‡
          • 🄬MSP430åµŒå…„å¼ęŽ„å£ē¼–ēØ‹(ęƒÆę€§ęµ‹é‡å•å…ƒęø©ę¹æåŗ¦åŒéŸ³å¤šé¢‘ē£åŠ›č®”LCDę˜¾ē¤ŗē­‰ļ¼‰
          • 🄬MSP432 ęæč½½ēŗ¢å¤–ę”¶å‘å™ØęØ”å—ęŽ„å£IR LEDęŽ§åˆ¶
          • 🄬Raspberry Pi Pico MicroPython čæžęŽ„ ESP8266 WiFi ęØ”å—
          • 🄬Proteus仿真Arduinoå’Œä¼ ę„Ÿå™Ø
          • 🄬MSP432(ARM Cortex M4)和Code Composer Stduio(嵌兄式 C)
          • 🄬MSP432(ARM Cortex M4)和Code Composer Stduio(嵌兄式 C)
          • 🄬MicroPython 编程 Raspberry Pi Pico
          • 🄬Raspberry Pi(Python)äø²č”Œå¤–č®¾ęŽ„å£SPI驱动FPGA(VHDL)ęŽ§åˆ¶LED
          • 🄬FPGA(VHDL)äø²č”Œå¤–č®¾ęŽ„å£SPI é€šč®ÆåŠ é€Ÿåŗ¦č®”
          • 🄬FPGA(VHDL) é€šē”Øå¼‚ę­„ę”¶å‘å™ØUART和I2Cé€šč®Æęø©åŗ¦ę•°ę®
          • 🄬FPGA(VHDL)ęØ”ę•°č½¬ę¢IPå’Œé”ē›øēŽÆIPęæ€å…‰äæ”å·åˆ¤å®šäŗŗę•°
          • 🄬TM4C123äø­ę–­é€šč®Æå’Œä¼ ę„Ÿå™ØęŽ„å£
          • 🄬Raspberry Pi Pico和MicroPython Arduino锹目
          • 🄬MSP432使用CCSęØ”ę•°č½¬ę¢(ADC)é€šē”Øč¾“å…„č¾“å‡ŗ(GPIO)č„‰å®½č°ƒåˆ¶(PWM)é€šē”Øå¼‚ę­„ęŽ„ę”¶å™Øå’Œå‘é€å™Ø(UART)及其RTOSå’Œęœŗå™Øäŗŗč¶…å£°ę³¢č·ē¦»ę£€ęµ‹
          • 🄬STM32嵌兄式Rusté€šč®Æē¤ŗä¾‹
          • 🄬STM32借助Mbed OSå¤šēŗæēØ‹č°ƒčŠ‚ē”µč„‘éŸ³é‡
          • 🄬Tinkercad和LTspice仿真Arduino音频
          • 🄬Arduino和HC-05č“ē‰™ęØ”å—
          • 🄬PythonęŽ¢ē“¢Raspberry Pięœŗå™Øäŗŗå¹³å°
          • 🄬Arduino nRF52840é«˜ēŗ§č“ē‰™5
          • 🄬TensorFlow Lite深度学习Arduinoå¾®ęŽ§åˆ¶å™Ø
          • 🄬Blynk监视ESP8266 MQTTé€šč®ÆRaspberry Pi温湿度
          • 🄬Raspberry Pi代理MQTTåč®®äø€åÆ¹ESP8266čŠ‚ē‚¹
          • 🄬App Inventorč‡Ŗå®šä¹‰ęž„å»ŗAndroid App
          • 🄬HC-05č“ē‰™ęØ”å—äø»ä»ŽęœŗATęŒ‡ä»¤
          • 🄬Arduinoå¤šä¼ ę„Ÿå™ØI2Cé€šč®Æ
          • 🄬Arduino和Raspberry Piä¹‹é—“ēš„I2Cé€šč®Æ
          • 🄬ESP32ēš„ESP-NOWęæä¹‹é—“ęœ€ē®€å•ēš„ę— ēŗæé€šäæ”ļ¼ˆå…¼å®¹ESP8266)
          • 🄬ESP32 LoRaä¼ ę„Ÿå™ØčæœēØ‹é€šäæ”ē›‘ęŽ§
          • šŸ„¬ä½æē”ØArduino IDEēš„ESP32ē”µå®¹å¼č§¦ę‘øä¼ ę„Ÿå™Øå¼•č„š
          • 🄬ESP32 ADC –使用Arduino IDEčÆ»å–ęØ”ę‹Ÿå€¼
          • šŸ„¬ä½æē”ØArduino IDEēš„ESP32č“ē‰™ē»å…øå…„é—Ø
          • 🄬ESP32å†…ē½®éœå°”ę•ˆåŗ”ä¼ ę„Ÿå™Ø
          • 🄬ESP32é—Ŗå­˜-å­˜å‚Øę°øä¹…ę•°ę®ļ¼ˆå†™å’ŒčÆ»ļ¼‰
          • šŸ„¬ä½æē”ØArduino IDEēš„ESP32 PWM
          • 🄬ESP32和TensorFlow Liteé¢å‘å¾®ęŽ§åˆ¶å™Øēš„ē¬¬äø€ę­„
          • 🄬ESP32åœØēŗæč°ƒčÆ•
          • 🄬在Raspberry Pi上运蔌OpenBuildsꎧ件
          • 🄬nRF52840 BLE(ä½ŽåŠŸč€—č“ē‰™)客户端/ęœåŠ”å™ØčæœēØ‹ęŽ§åˆ¶
          • 🄬ESP32 WiFiåå¤„ē†å™Øč®¾ē½®nRF52840ē½‘ē»œč®æé—®
          • 🄬Arduinoé„ęŽ§å‘å°„å™Ø
          • 🄬Arduinoę— åˆ·ē”µęœŗå’Œē”µå­é€Ÿåŗ¦ęŽ§åˆ¶
          • 🄬在运蔌MicroPythonēš„ESPäøŠä½æē”ØJupyter Notebook
          • šŸ„¬ä½æē”ØFlask在 Raspberry Pi 上设置REST Web API
          • 🄬NodeMCU(ESP8266)使用HTTP Get和Post
          • 🄬30äøŖ BeagleBone åµŒå…„å¼é”¹ē›®
          • 🄬Arduino 和 Raspberry Pi ä¼ ę„Ÿå™Øå®žč·µ
          • 🄬Arduino 运蔌 Rust
          • 🄬ArduinoäøŽC#é€šč®Æ
        • šŸ§„ę•°ę®ē§‘å­¦ | Data Science
          • šŸ§„Python和Rę¦‚ēŽ‡ē»Ÿč®”ē®—ę³•å»ŗęØ”čÆ„ä¼°ę°”č±”å’ŒčæåŠØ
          • šŸ§„Pythonå‘½ä»¤č”Œē»ˆē«Æåˆ†ęžåŽå‹¤ē‰©čµ„åˆ†é…-音乐-机场-é…’åŗ—čÆ„č®ŗę•°ę®
          • šŸ§„Pythonę”å½¢å›¾ēƒ­å›¾ē›“ę–¹å›¾åÆč§†åŒ–ē²¾ē„žå„åŗ·ēŠ¶ę€(åŒ»å­¦ę•°ę®é›†)
          • šŸ§„Pandasę•°ę®å˜å½¢å’ŒęØ”åž‹åˆ†ęž
          • šŸ§„Pythonę—¶é—“åŗåˆ—ęØ”åž‹ä½æē”Øę²³ęµ-åœ°äø‹ę°“-ę³µę°“ę•°ę®č®”ē®—åœ°äø‹ę°“ä½äø‹é™
          • šŸ§„Pythonę•°ę®ē®”é“åŠå®žę—¶č¾¹ē¼˜ę•°ę®(物联网)Kafka-MiNiFi和Spark
          • šŸ§„Python(3Dę•°ę®åˆ†ęž)ä½“ē“ åŒ–ē½‘ę ¼å’Œē‚¹äŗ‘åŠé‚»åŸŸåˆ†ęž-Kē»“ę ‘å’Œå…«å‰ę ‘
          • šŸ§„Python(异常值病理检测)čƒŽå„æåæƒēŽ‡å’Œå­å®«ę”¶ē¼©ē‰¹å¾č·ē¦»ę­£åøøå€¼åē§»é˜ˆå€¼
          • šŸ§„PythonęŽ¢ē“¢ę€§ę•°ę®åˆ†ęžę¶ˆč“¹ę„ę„æ
          • šŸ§„PythonęŽ¢ē“¢ę€§ę•°ę®åˆ†ęžå…¬åøē “äŗ§å¾å…†
          • šŸ§„Pythonēŗæę€§å›žå½’å’Œé€»č¾‘å›žå½’åˆ†ęžé‡‘čžč„é”€ē­–ē•„
          • šŸ§„Pythonę”ä»¶ę¦‚ēŽ‡-č“å¶ę–Æå®šē†å’ŒęŸÆå°”čŽ«å“„ę“›å¤«-ę–Æē±³å°”čÆŗå¤«ę£€éŖŒåˆ†ęžē¼ŗå‹¤ę•°ę®
          • šŸ§„Pythonę¦‚ēŽ‡ē†č®ŗå’Œę—¶é—“åŗåˆ—åˆ†ęžå…±äŗ«äŗ¤é€šå·„å…·ę•°ę®
          • šŸ§„Pythonåˆ†ęžē»˜å›¾č’™ē‰¹å”ę“›å’Œé©¬å°”åÆå¤«é“¾č’™ē‰¹å”ę“›ę ·ęœ¬
          • šŸ§„Pythonę™ŗčƒ½é©±åŠØę•°å­¦ęØ”åž‹å’Œę³°å‹’ēŗ§ę•°-č“å”žå°”ę›²ēŗæęØ”ę‹Ÿå¾®č§‚äŗ¤é€š
          • šŸ§„Pythonē»Ÿč®”ęØ”åž‹ęŽ¢ē“¢ę€§ę•°ę®åˆ†ęž(EDA)系统(单变量-双变量-相关性-缺失值)
          • šŸ§„PythonęŽ¢ē“¢ę€§ę•°ę®åˆ†ęž(EDA)ē»Ÿč®”ę•°ę®å’Œå»ŗęØ”
          • šŸ§„Ré™ē»“é¢„ęµ‹ē™Œē—‡č‰Æę€§ęˆ–ę¶ę€§
          • šŸ§„Pythonå¤§ę•°å®šå¾‹å’Œäø­åæƒęžé™å®šå¾‹é¢„ęµ‹ęŠ•åøęœŸęœ›ēŗæę€§å€¼
          • šŸ§„ē®€å•ēŗæę€§å›žå½’R和Pythoné¢„ęµ‹čŗ«é«˜ä½“é‡å›½å†…ē”Ÿäŗ§ę€»å€¼äŗŒę°§åŒ–ē¢³ęŽ’ę”¾é‡
          • šŸ§„R和Pythonäø»ęˆåˆ†åˆ†ęž(PCA)ēŗæę€§åˆ¤åˆ«åˆ†ęž(LDA)及其K-ęœ€čæ‘é‚»åˆ†ē±»å™Øå’Œē—…ē†é¢„ęµ‹
          • šŸ§„Pythonč‡Ŗå›žå½’ē§»åŠØå¹³å‡å’Œč‡Ŗå›žå½’ē»¼åˆē§»åŠØå¹³å‡åŠåæ«é€Ÿé¢„ęµ‹ęÆęœˆé£žęœŗä¹˜å®¢
          • šŸ§„ē›‘ęŽ§ē³»ē»Ÿå’Œē½‘ē»œå…„ä¾µPythonęµå¼ę•°ę®å¼‚åøøę£€ęµ‹
          • šŸ§„PythonęŽ¢ē“¢ę€§ę•°ę®åˆ†ęž(EDA)ęš“åŠ›åÆ†ē ēŒœęµ‹ę”»å‡»ē½‘ē«™ē™»å½•å¼‚åøøę£€ęµ‹ē­–ē•„
          • šŸ§„Pythonč’™ē‰¹å”ę“›ęØ”ę‹Ÿå·„ä½œęˆ–ä»»åŠ”č½»é‡ē¼“ę€„ē­–ē•„
          • šŸ§„Pythonäŗ¤äŗ’å¼D3.jsåÆč§†åŒ–åŗ”ē”Øę ·ęæ
          • šŸ§„Pythonē°åŗ¦å…±ē”ŸēŸ©é˜µOpenCV和scikit-imageå›¾åƒē‰¹å¾åˆ†ęžå’ŒK-ęœ€čæ‘é‚»ē®—ę³•
          • šŸ§„Pythonå…±ē”ŸēŸ©é˜µåÆ¹ęÆ”å„‡å¼‚å€¼åˆ†č§£ (SVD)å’ŒčÆåµŒå…„
          • šŸ§„å…±ē”ŸēŸ©é˜µFlask和D3.jsåÆč§†åŒ–é”€å”®ę•°ę®å’ŒPythonåˆ†ęžč®ŗę–‡é‡å äø»é¢˜
          • šŸ§„D3äŗ¤äŗ’å¼åÆč§†åŒ–Pythonč‡Ŗē„¶čÆ­čØ€å·„å…·åŒ…å‘½åå®žä½“čÆ†åˆ«
          • šŸ§„Rä»Ŗč”Øęæ-å›¾åƒå¤„ē†-ę•°ę®ē¼©å‡-ę˜ å°„
          • šŸ§„Rę—¶é—“åŗåˆ—č‡Ŗå›žå½’ęØ”åž‹å’ŒęŽ¢ē“¢ę€§ę•°ę®åˆ†ęž
          • šŸ§„R和Pythonę¦‚ēŽ‡åˆ†åøƒē»Ÿč®”å’ŒPythonéŖŒčÆē‹¬ē«‹ę€§å’Œå¹³ēØ³ę€§ę—¶é—“åŗåˆ—
          • šŸ§„Rē»Ÿč®”å›žå½’åˆ†åøƒē®—ę³•ē¤ŗä¾‹č§č§£
          • šŸ§„Rę•°ę®å›¾å½¢åˆ†ęžåŠē²¾ē„žå„åŗ·ę•°ę®å’Œå„čŗ«ę•°ę®åÆč§†åŒ–é”¹ē›®
          • šŸ§„Rē”Ÿē‰©äæ”ęÆå­¦ē»Ÿč®”åˆ†ęž
          • šŸ§„Råˆ†ęžåÆč§†åŒ–å®žē”Øę•°ę®(čˆŖē­_教育_餐厅_租户_å˜čæ_寿命_安全)
          • šŸ§„Pythonę—¶é—“åŗåˆ—é¢„ęµ‹č‚”ē„Øä»·ę ¼å’Œē©ŗę°”č“Øé‡ļ¼ˆę°®ę°§åŒ–åˆē‰©ęµ“åŗ¦ļ¼‰
          • šŸ§„Anaconda_Python视觉锹目TensorFlow_scikit-learn和OpenCV及其Raspberry Pi雾讔算
          • šŸ§„PythonęŽ¢ē“¢ę€§ę•°ę®åˆ†ęžē•…é”€ä¹¦
          • šŸ§„D3äŗ¤äŗ’å¼åÆč§†åŒ–Pythonč‡Ŗē„¶čÆ­čØ€å·„å…·åŒ…å‘½åå®žä½“čÆ†åˆ«
          • šŸ§„Jupyter Notebookåˆ†ęžWiresharkꍕꍉESP8266äæ”ę ‡ę•°ę®
        • šŸ ē®—ę³•ęØ”åž‹ | Algorithm
          • šŸ Pythonēƒ­åŒ–å­¦å›ŗę€åŒ–å­¦ęØ”åž‹ęØ”ę‹Ÿ
          • šŸ Python和C++čƒ¶ä½“ē²’å­äø‰ē»“ę®‹å·®ē®—ę³•ęØ”åž‹å’Œē»†åŒ–äŗšåƒē“ ē®—ę³•
          • šŸ Python和R及Juliaå¦ŠåØ ē›øå…³ē–¾ē—…ē”Ÿē‰©å‰–ęžē®—ę³•
          • šŸ Pythonä½“ē“ åŒ–č„‘äæ”ęÆå›¾ę··ę·†ēŸ©é˜µē›øä¼¼ę€§ęŒ‡ę ‡čÆ„ä¼°
          • šŸ Pythonē„žē»ę±‚č§£å™ØåŽ»č€¦åˆē®—ę³•å’Œē“¦ē‘Ÿę–Æå¦č·ē¦»é‡åŒ–čÆ„ä¼°
          • šŸ Pythonē‡ƒēƒ§åŗŸę°”ęŽ’ę”¾ęŽØę–­ē®—ę³•ęØ”åž‹
          • šŸ Pythonēƒ­é¢‘éšęœŗę£®ęž—åˆ†ē±»å™Øē®—ę³•ęØ”åž‹ęØ”ę‹Ÿ
          • šŸ Python(TensorFlow和PyTorch)äø¤ē§ę˜¾å¾®é•œęˆåƒé‡å»ŗē®—ę³•ęØ”åž‹
          • šŸ Python(PyTorch)å¤ščÆ­čØ€å›¾åƒę„ŸēŸ„č“Øé‡ęŒ‡ę ‡ē®—ę³•
          • šŸ Python(PyTorch)ē‰©ē†å˜åŒ–åÆå¾®åˆ†ē„žē»ē®—ę³•
          • šŸ Python(TensorFlow)å¤šęØ”å…‰ēŗ¤å…‰ęŸē®—ę³•å’ŒGPUå¹¶č”ŒęØ”ę‹Ÿ
          • šŸ Python(PyTorch)ē”…å…‰ē”µå€å¢žē®”å’Œé‡åŒ–ę„ŸēŸ„č®­ē»ƒäŗšå…‰å­ē®—ę³•éŖŒčÆ
          • šŸ Python(TensorFlow)č”å°„å…‰å­¦å±‚å·ē§Æē®—ę³•ęØ”ę‹Ÿ(č‹±ä¼Ÿč¾¾GPU)
          • šŸ Pythonéžēŗæę€§å…‰å­¦ę˜ å°„ę•°ę®åŽ‹ē¼©ē®—ę³•
          • šŸ Python(JAX)ę•£å°„ēŸ©é˜µéžēŗæę€§ē„žē»ē®—ę³•å’ŒåŒ–å­¦ę•£å°„ē®—ę³•
          • šŸ Python(C++)ę¤å…„å›¢å›¾åµŒå…„é™ē»“ē®—ę³•
          • šŸ MATLAB(R和C++)å¤§č‚ ę†čŒåˆęˆē”Ÿē‰©ęœŗę¢°ę•°å­¦ęØ”åž‹
          • šŸ Python(C++)å¤§å°ŗåŗ¦åˆ†å±‚č¾¹å€¼ę—¶å˜å›¾ē»Ÿč®”ęŽØē†å¹¶č”Œē®—ę³•
          • šŸ Pythonå±‚å†…å±‚å¤–å¤šå›¾åøƒå±€å›¾åŸŗåˆ†ęž
          • šŸ C++和Rē©æåˆŗé’ˆåøę“»ę£€č‚æē˜¤ē®—ę³•ęØ”åž‹ęØ”ę‹Ÿå’Œčæ›åŒ–åŠØåŠ›å­¦é‡åŒ–å·®å¼‚ęØ”åž‹
          • šŸ PythončÆē‰©å‰Æä½œē”Øē”Ÿē‰©å›¾åˆ†ęžē®—ę³•å’ŒēŸ©é˜µé™ē»“ē®—ę³•
          • šŸ Pythoné²ę±¶ę„å¤–čŽ±é”æå¤ę‚å›¾ę‹“ę‰‘åˆ†č§£ē®—ę³•
          • šŸ Pythonē¾¤ä½“č¶‹å‘ę€§ę½œå…³č”ęœ‰å‘ę— å‘å¤šå›¾å±‚ē®—ę³•
          • šŸ Python和MATLABē½‘ē»œå°ŗåŗ¦ē»“ęž„å’Œå¹‚å¾‹åŗ¦å¤§åž‹å›¾ē”Ÿęˆå¼ęØ”åž‹ē®—ę³•
          • šŸ MATLAB和Pythoné›¶ęØ”åž‹ē¤¾ä¼šē”Ÿē‰©ē”Ÿęˆå¼ē»“ęž„åŒ–å›¾
          • šŸ Pythonē§ē¾¤é‚»ęŽ„ēŸ©é˜µå½—ę˜Ÿé£Žē­čæ›åŒ–å›¾ē®—ę³•
          • šŸ Python和C++éŖØé«“ē»†čƒžčæ›åŒ–č§£ęžę•°å­¦ęØ”åž‹
          • šŸ Python和C++č”Œäŗŗč½Øčæ¹é¢„ęŽØē®—å’Œē©ŗé—“ęœŗå™Øäŗŗå¤šä¼ ę„ŸčžåˆåŒå›¾ē®—ę³•ęØ”åž‹
          • šŸ Python和C++å…ØēƒåÆ¼čˆŖå«ę˜Ÿē³»ē»Ÿå’Œęœŗå™Øäŗŗå§æę€č§¦č§‰ę„ŸēŸ„äŗŒåˆ†å›¾ē®—ę³•
          • šŸ Pythončœ‚ēŖé€šäæ”Wi-Fi和GPUå˜åˆ†ęŽØē†åŠęš“åŠ›å“ˆåøŒåŠ åÆ†åč®®å›¾ę¶ˆęÆē®—ę³•
          • šŸ Pythonē²¾ē„žē—…ē®—ę³•å’Œč‡Ŗęˆ‘č®¤ēŸ„å¼‚ē±»ę•°å­¦ęØ”åž‹
          • šŸ Pythonč§†č§‰č½Øčæ¹å‡ ä½•ęƒÆę€§å•å…ƒč¶…ē»“č®”ē®—ē»“ęž„ē®—ę³•
          • šŸ Pythoné‡åŠ›å¼¹å¼“ęµä½“ę™ƒåŠØå¾®åˆ†ę–¹ēØ‹ęØ”åž‹å’Œäŗ¤ē›“ęµē”µé˜»ē”µå®¹ē”µč·Æ
          • šŸ Pythonå¾®ē£å­¦ē£å€¾ę–œå’Œč„æå””č§„åˆ™ē®—ę³•
          • šŸ Pythonēƒ­ę¶Øč½ęµä½“åŠ›å­¦ę±‚č§£ē®—ę³•å’Œč‹±ä¼Ÿč¾¾äŗŗå·„ę™ŗčƒ½ę øčÆ„ä¼°ęØ”åž‹
          • šŸ C++ | Pythonę°”ę³”č”Øé¢å¼ åŠ›å’Œé¢„ęœŸå½¢ę€åŠäøŠå‡é€Ÿåŗ¦ę•°å€¼ęØ”åž‹
          • šŸ Pythonę”æåŗœēŸ­ęœŸęˆ–é•æęœŸå€ŗåŠ”ęŽå˜‰å›¾ē­‰ä»·ęØ”åž‹ēŠ¶ę€ēŸ©é˜µ
          • šŸ Python | C++ | MATLABęœŗå™Øäŗŗę­£é€†å‘čæåŠØå­¦åŠØåŠ›å­¦ę±‚č§£å™ØåŠē®—ę³•
          • šŸ Pythonē¤¾ä¼šē»ęµŽ | ę€€ē‰¹ēš„å¼‚ę–¹å·®äø€č‡“ä¼°č®”é‡
          • šŸ Python | R ę½œåœØę··åˆęØ”åž‹
          • šŸ Python | MATLAB | R åæƒē†č®¤ēŸ„ę•°å­¦å›¾å½¢ęØ”åž‹ęŽØę–­
          • šŸ Python | R é›Œé›„é…åÆ¹å’Œé±¼ä»”å˜å¼‚é©¬å°”åÆå¤«é“¾
          • šŸ Pythoné«˜å±‚č§£é›‡å’Œå®¢ęˆ·ę“»č·ƒåŗ¦é‡åŒ–äøē”®å®šę€§ęØ”åž‹
          • šŸ Python | R | MATLABē¾¤ä½“ę¶ˆęÆå’Œé—ä¼ ē—…ē­›é€‰å¤šå…ƒē»Ÿč®”ęØ”åž‹
          • šŸ Pythoné—®é¢˜å†³ē­–å½±å“å›¾ē»“ęž„åŒ–ę¦‚ēŽ‡ęØ”åž‹
          • šŸ Python | R | MATLABé«˜ę–Æčæ‡ēØ‹ē»Ÿč®”ęØ”åž‹
          • šŸ Pythonē‡ƒę°”č½®ęœŗę±½č½¦é’¢ę£’ę•“ęµē”µč·ÆęŽ§åˆ¶å›¾ē»Ÿč®”ęØ”åž‹čæ‡ēØ‹ę½œåŠ›åˆ†ęž
          • šŸ Pythonę±½č½¦ę²¹č€—ę“»å”žå¾ŖēŽÆåŽŸęœØēŗ±å¼ŗåŗ¦åŠē”µé˜»č¦†ē›–ēŽ‡ēŽ°å®žē»Ÿč®”ęØ”åž‹č®”ē®—
          • šŸ Pythonå°„é¢‘ē”µē£č‚æē˜¤ēƒ­ē–—ę•°å­¦ęØ”åž‹å’Œē”µē£ēˆ†ē‚øę€§å˜åŒ–ē»Ÿč®”ęŽØē†ęØ”åž‹
          • šŸ Pythonęµę„Ÿä¼ ę’­ę„ŸęŸ“åŗ·å¤å›¾ęØ”åž‹č®”ē®—å’Œē®—ę³•
          • šŸ Pythonęµę„Ÿåøøå¾®åˆ†ę–¹ēØ‹ęˆæå®¤ę•°å­¦ęØ”åž‹
          • šŸ Pythonč„‘ęŗ¶č“Øę‰©ę•£ē”Ÿē†å‡ ä½•ęØ”åž‹č®”ē®—
          • šŸ Pythonęœŗå™ØäŗŗåŠØåŠ›å­¦å’Œē»†čƒžé…¶åøøå¾®åˆ†ę–¹ēØ‹
          • šŸ Pythonäø“åŗŠåŒ»å­¦ē—…ę€å›¾å­¦ä¹ 
          • šŸ Pythonē«žęŠ€ęÆ”čµ›ęµä½“åŠØåŠ›å­¦č‰ŗęœÆå“å’ŒčÆē‰©č“Øé‡å›¾å­¦ä¹ 
          • šŸ Pythonå…ƒčƒžč‡ŖåŠØęœŗę²™å †ē³–ę™Æå µå”žęØ”åž‹å›¾å­¦ä¹ 
          • šŸ Pythonå›¾åµŒå…„äæ”ęÆę½œåœØč”Øå¾ē®—ę³•
          • šŸ Pythonéžēŗæę€§å›¾åµŒå…„å’Œé™ē»“ęŠ€ęœÆę‹‰ę™®ę‹‰ę–Æē‰¹å¾å›¾ē®—ę³•
          • šŸ Cä»£ē åæ«é€Ÿå‚…é‡Œå¶å˜ę¢-åˆ†ē±»å’ŒęŽØē†-åøøå¾®åˆ†å’Œåå¾®åˆ†ę–¹ēØ‹
          • šŸ č¶…å®šå’Œę¬ å®šēŗæę€§ę–¹ēØ‹ē»„C代码数值算法
          • šŸ Pythonč“Ŗåæƒē®—ę³•(Kruskal算法)ē”ŸęˆåÆ¹ęŠ—ē½‘ē»œå’Œå¼ŗåŒ–å­¦ä¹ ę•°ę®é›†(č®”ē®—ęœŗč§†č§‰)
          • šŸ Dijkstra算法 | čæŖę°ę–Æē‰¹ę‹‰ē®—ę³•-čæ·å®«č§£ē®—å™ØåÆč§†åŒ–
          • šŸ Python和Pygameē»˜åˆ¶č‡ŖåŠØé©¾é©¶å’Œē§»åŠØęœŗå™Øęœ¬åœ°č§„åˆ’å™Øē®—ę³•
          • šŸ Pythonē®€å•ēŗæę€§å›žå½’ē®—ę³•å®žēŽ°åŠåŗ”ē”Øē¤ŗä¾‹
          • šŸ Python柯布-é“ę ¼ę‹‰ę–Æę•ˆē”Øå‡½ę•°č§„åˆ’é£Ÿå“é¢„ē®—å’Œę‹Ÿåˆå‰ę²æē”Ÿäŗ§å‡½ę•°čÆ„ä¼°å†œä½œē‰©ē”Ÿäŗ§ę•ˆēŽ‡
          • šŸ ä¼ÆåŠŖåˆ©ę–¹ēØ‹ē¤ŗä¾‹ Python č®”ē®—ļ¼ˆę±½ę°“ęµä½“å’Œå–·ę³‰å·„ēØ‹ļ¼‰
        • šŸē‰©ē†å­¦ | Physics
          • šŸPythonéŖØęž¶č‚Œä½“čæåŠØå­¦ę•°å­¦ęØ”åž‹
          • šŸPythonåœ°éœ‡ę³¢é€†é—®é¢˜č§£ęž„ē®—ę³•å¤ę‚äæ”å·åˆ†ęž
          • šŸPythonč‡Ŗč”Œč½¦å…­č‡Ŗē”±åŗ¦é£žč”Œå™Øå¤ščæžęŽ„ä»¶éžēŗæę€§čæåŠØę–¹ēØ‹ęØ”åž‹
          • šŸC++(Python)č‚„ēš‚ę³”ę²«ę™®ę‹‰ę‰˜č¾¹ē•Œč†œę›²é¢ęØ”åž‹ē®—ę³•
          • šŸPython和MATLABē²˜ę€§åŠ›ęŽ„č§¦åŠ›åŠØę€ęØ”åž‹åŠéšå¼ę¬§ę‹‰ē®—ę³•
          • šŸPythonę¹ęµéšå¼ęØ”åž‹č€—ę•£ē²˜ę€§ę–¹ēØ‹å’Œå¤§ę¶”ęµęØ”ę‹Ÿ
          • šŸPythonč‡ŖåŠØé€ ę³¢å™Øę¤­åœ†ę›²ēŗæę³¢å­¤å­č§£
          • šŸPythonå…‰ęŸäø‰ē»“äŗŒē»“ę ‡é‡åœŗå’Œē®—ę³•
          • šŸC++é£Žęµå’ŒMATLAB | Python | CUDA åŗ“åŸƒē‰¹ęµę³Šč‚ƒå¶ęµč–„č†œęµä½“
          • šŸPython和Rę°“åŠ›ē”µåÆ¼ēŽ‡å’Œč¾¾č„æęµē„žē»ē®—å­
          • šŸPythonč®”ē®—ē‰©ē†ē²’å­åŠę‹‰ę ¼ęœ—ę—„å’Œå“ˆåÆ†é”æåŠØåŠ›å­¦
          • šŸPython和C++č®”ē®—ē‰©ē†å…‰å­¦ę³¢å½¢åŒ–å­¦ē»“ęž„ę•°å­¦ę–¹ēØ‹
          • šŸPythonē‰©ē†å­¦ęœ‰é™å·®åˆ†å¾®åˆ†ę±‚č§£å™Øå’ŒåŠØē”»ę³¢å½¢ä¼ ę’­
          • šŸPythonę•°å€¼å’Œē¬¦å·ē®—ę³•č®”ē®—åŠ3D视图物理数学波形方程
          • šŸPython(ē¬¦å·č®”ē®—åøøå¾®åˆ†ę–¹ēØ‹)č°ęŒÆå­ē‰›é”æčæåŠØę–¹ēØ‹
          • šŸęµä½“åŠ›å­¦åˆ†ęžå’Œåŗ”ē”ØåŸŗē”€
          • šŸē‰›é”æē¬¬äŗŒå®šå¾‹ę²æęµēŗæęµåŠØē²’å­ Python åˆ†ęž
        • šŸ«‘ę•°å­¦ | Math
          • šŸ«‘MATLABęæ€å…‰é€šäæ”å’Œ-ē§Æę¶ˆęÆä¼ é€’ē®—ę³•(Pythonå›¾å½¢ęØ”åž‹ē®—ę³•)ęØ”ę‹Ÿč°ƒåˆ¶
          • šŸ«‘Pythoné«˜åŽ‹ē”µå®¹åÆ¼ē”µä½“å’Œę°“ę–‡ę¤­åœ†å¾®åˆ†
          • šŸ«‘Pythonä½Žęŗ«åŠåÆ¼ä½“ē”µå­ęŸé‡å­ę³¢ē®—ę³•č®”ē®—
          • šŸ«‘Pythonē«ē„°é”‹åŠØåŠ›å­¦å’Œęµ…ę°“č”Øé¢ę³¢ęµŖåå¾®åˆ†ę–¹ēØ‹
          • šŸ«‘Python | C++ę¼‚ē§»ę‰©ę•£ę–¹ēØ‹å’Œę— é£Žé™©å„—åˆ©å…¬å¼ē®—ę³•å¾®åˆ†
          • šŸ«‘Pythonäŗ§å“ä»·ę ¼å¼¹ę€§ē”Ÿå‘½å‘ØęœŸå’Œå®¢ęˆ·ē¾¤åˆ©ę¶¦ē‚¹ę¦‚ēŽ‡ęŽØē†ę•°å­¦ęØ”åž‹
          • šŸ«‘Python和MATLAB及C++čµ„äŗ§ä»·ę ¼ēœ‹ę¶Øēœ‹č·ŒåÆ¹å†²ęØ”åž‹å’Œå¾®ē§Æåˆ†
          • šŸ«‘Pythonēŗæę€§ä»£ę•°ę•°å­—å›¾åƒå’Œå°ę³¢åˆ†ęžä¹‹äŗŒ
          • šŸ«‘Pythonēŗæę€§ä»£ę•°å‚…é‡Œå¶åˆ†ęžå’ŒåŠØę€ē³»ē»ŸęØ”ę‹Ÿåˆ†ęžä¹‹äø€
          • šŸ«‘Python和Julia TensorFlowē§‘å­¦č®”ē®—åøøå¾®åˆ†ę–¹ēØ‹ę±‚č§£å™Ø
          • šŸ«‘ē»Ÿč®”å­¦Python讔算巄具
          • šŸ«‘Pythonę•°å­¦ä»»åŠ”ē»Ÿč®”å¾®ē§Æåˆ†å’Œä»£ę•°
          • šŸ«‘Pythonč“å¶ę–ÆęŽØē†å’Œę¦‚ēŽ‡č§„åˆ’
          • šŸ«‘PythonéŖŒčÆåŽšå°¾ę•°ę®éµå¾Ŗå¹‚å¾‹åˆ†åøƒ
          • šŸ«‘Python解离散数学
          • šŸ«‘Pythonåˆ‡ęÆ”é›Ŗå¤«äøē­‰å¼éŖŒčÆå¤§ę•°å®šå¾‹
          • šŸ«‘Rå¤§ę•°å®šå¾‹ęØ”ę‹Ÿåœ†å‘ØēŽ‡
          • šŸ«‘Python å¾®ē§Æåˆ†ę•°å€¼å’Œē¬¦å·č®”ē®—ļ¼ˆč®”ē®—ęœŗä»£ę•°ļ¼‰
          • šŸ«‘Python数学应用(ēŸ¢é‡å›¾å½¢-å¾®ē§Æåˆ†-ē‰©ē†ęØ”ę‹Ÿ-ęœŗå™Øå­¦ä¹ )
        • šŸ„¦å·„ēØ‹ | Engineering
          • 🄦MATLAB和Pythonå‘é‚£ē§‘ABBåŗ“å”å²é™¶ęÆ”å°”å·„äøšęœŗå™ØäŗŗęØ”ę‹Ÿē¤ŗę•™ę”†ęž¶
          • 🄦Pythonäŗŗå½¢ęœŗčøŠč·ƒč·Øę äø¾é‡ęŠ•ēÆ®é«˜ē»“ę•°åŠØä½œē®—ę³•ęØ”åž‹
          • 🄦Pythonåä½œčæåŠØęœŗå™Øäŗŗåˆšä½“åŠ›å­¦č§£č€¦ęØ”åž‹
          • 🄦Python | C# | MATLAB åŗ“å”ęœŗå™Øäŗŗå¾®åˆ†čæåŠØå­¦ | ꬧ꋉ-ę‹‰ę ¼ęœ—ę—„åŠØåŠ›å­¦ | ę··åˆåŠØåŠ›ęŽ§åˆ¶
          • 🄦MATLABé›Øåˆ®é€šé£Žē©ŗč°ƒęØ”ē³Šå™Øå’Œå‘ē”µåŽ‚ē”µåŠ›čšå˜å™Øå·ē§Æē„žē»
          • 🄦MATLAB和Pythonē½‘ę ¼ę”ęž¶ę”†ęž¶ęž„ä»¶åˆšåŗ¦č½½č·ä½ē§»å’Œå—åŠ›å¾®åˆ†ę–¹ēØ‹
          • 🄦Pythonę°®ę°§ē”²ēƒ·ä¹™ēƒ·ä¹™ēƒÆäø™ēƒÆę°”ä½“å’Œå›ŗä½“ēƒ­åŠ›å­¦ęØ”åž‹č®”ē®—
          • 🄦Pythonē¤¾ē¾¤ēŗ½åø¦å…³ē³»č°±å’Œå›¾ē„žē»
          • 🄦R和Pythonåø‚åœŗēÆ®åˆ†ęžē®—ę³•åŠč”Œäøŗåˆ†ęžęØ”åž‹
          • 🄦Julia和Pythonč››ē½‘å›¾č½Øé“å›¾åŗžåŠ čŽ±ęˆŖé¢ę›²é¢ē”®å®šę€§éžēŗæę€§ē³»ē»Ÿ
          • 🄦Python和C++ę•°å­¦ē‰©ē†č®”ē®—åˆ†å½¢ēƒ­åŠ›å­¦é™ē”µå­¦å’Œę³¢åŠØę–¹ēØ‹
          • 🄦Python和C++éŸ³č°ƒéŸ³ē¬¦č§„åˆ’å’Œē®—ę³•
          • 🄦Python和Juliaę²³ęµę¹–ę³Šę²æęµ·ę°“åŸŸē‰¹å¾ę•°å€¼ē®—ę³•ęØ”åž‹
          • 🄦Python和C++ēƒ­é‡Šå…‰å’Œå…‰ęæ€å‘å…‰ęœ—ä¼ÆWå‡½ę•°č¾‰å…‰ę›²ēŗæåå·ē§Æ
          • 🄦Python和Rēƒ­é‡Šå…‰åŠØčƒ½ęœ—ä¼ÆWå‡½ę•°č§£ęžę–¹ēØ‹
          • 🄦Julia和Pythonēŗæę€§ēŸ©é˜µęœŗå™Øå­¦ä¹ å’ŒåŠØę€ęØ”åž‹ä»£ē č®”ē®—
          • 🄦JuliaåŠ³åŠØåŠ›åø‚åœŗē»ęµŽę•°å­¦ęØ”åž‹ä»·å€¼ē­–ē•„é€‰ę‹©
          • 🄦Pythonē„žē»ē½‘ē»œęå–éŸ³ä¹ę•°ę®å’Œå¼€ę”¾C++éŸ³é¢‘å›¾å½¢ę”†ęž¶
          • 🄦Pythonęµä½“ę•°ę®ē»Ÿč®”ęØ”åž‹å’Œęµ…ę°“ęø—ęµå¹³ęµęØ”åž‹ęØ”ę‹Ÿ
          • 🄦Pythoné‡åŒ–å™Ŗå£°å·ē§Æäæ”å·å’Œå‚…é‡Œå¶ę—¶é¢‘åˆ†ęž
          • 🄦C++ę•°å­—åŒ–å£°éŸ³äæ”å·å¤„ē†å’Œę•°ęŽ§ęŒÆč”åˆęˆ
          • 🄦GPU(CUDA)å¼‚ęž„ä¼—ę øę•°å€¼č®”ē®—
          • 🄦Pythonå’Œå‘½ä»¤č”Œč„šęœ¬(C/C++)å—…ęŽ¢ē‰©č”ē½‘ē»œåŠēŸ­äø­čæœēØ‹ę— ēŗæē”µ
          • 🄦Kali Linuxē¤¾ä¼šå·„ēØ‹å’Œē½‘ē»œåŗ”ē”Øę”»å‡»ęø—é€ęµ‹čÆ•
          • 🄦Kali Linux(åŽęœŸåˆ©ē”Ø)ę“»åŠØē›®å½•ę”»å‡»å’Œę— ēŗæē½‘ē»œęø—é€ęµ‹čÆ•
          • 🄦Kali Linuxä¾¦åÆŸå’Œē½‘ē»œęø—é€ęµ‹čÆ•
          • šŸ„¦ē§»åŠØęœŗå™ØäŗŗåµŒå…„å¼ęŽ§åˆ¶åŗ”ē”ØåŠMATLAB仿真
          • 🄦Kali Linuxęø—é€ęµ‹čÆ•ēŽÆå¢ƒå»ŗē«‹
          • 🄦LabViewę•°å­¦å’Œé¾™ę ¼-åŗ“å””-PID-ęŒ‡ę•°å¹³ę»‘-ęØ”ē‰¹å”ę“›ęØ”ę‹Ÿ
          • 🄦LAUNCHXL-F2806x嵌兄式VisSim和PLECSē”µåŠ›é©±åŠØę— ä¼ ę„Ÿå™ØęŽ§åˆ¶
          • 🄦MatLab和Spiceē”µč·Æåˆ†ęžļ¼Œäæ”å·å¤„ē†å’Œę»¤ę³¢å™Øč®¾č®”å…„é—Ø
        • šŸ„­č®”ē®— | Computing
          • 🄭Pythoné“…č“„ę”¾ē”µēƒ­åŠ›å­¦ę— é‡ēŗ²ęØ”ę‹Ÿåˆ†ęž
          • 🄭Python和MATLABé”‚ē”µé“…č“„ē”µåŒ–å­¦å¾®åˆ†ęØ”åž‹å’Œē­‰ę•ˆē”µč·Æ
          • 🄭MATLAB(Octave)ę··ē”µåŠØåŠ›čƒ½č€—čÆ„ä¼°
          • 🄭CUDA(C++)电磁(斯特拉锿-ę„šēŸ¢é‡č”å°„ē§Æåˆ†)č’™ē‰¹å”ę“›č®”ē®—åˆ†ęž
          • 🄭CUDA(C)ē£ę€č’™ē‰¹å”ę“›å’Œä¼ č¾“ēŸ©é˜µå¤šGPUå¹¶č”Œč®”ē®—åˆ†ęž
          • 🄭Pythonå¾®éœ‡ę³¢é¢‘ę•£ē›øé€Ÿåˆ†ęž
          • 🄭Pythonå™Ŗå£°ę•ę„Ÿåŗ¦å’Œę²‰ē§ÆåŒŗéœ‡åŠØę³¢
          • 🄭Pythonę°“å¾ŖēŽÆę ‡å‡†åŒ–åÆ¹ęÆ”ē®—ę³•å®žēŽ°
          • 🄭PythonꈖRę—¶åē§»ē®—ę³•å®žēŽ°
          • 🄭Pythonē©ŗé—“åœ°č”Øč”åŠØč“å¶ę–Æåœ°éœ‡é£Žé™©č®”ē®—ęØ”åž‹
          • 🄭Pythonę°”č±”č¾å°„å…‰č°±čƒ½é‡å¹³č””ęØ”åž‹
          • 🄭Pythonč‡Ŗé€‚åŗ”å…‰å­¦ęØ”ę€ę˜Ÿå½¢å°ę³¢åˆ†ęžå’Œåƒå·®ē®—ę³•
          • 🄭PythončŽ«å…°ē”Ÿę­»ęŠ‘åˆ¶ę”¾å¤§čæ›åŒ–å›¾
          • 🄭PythonēƒŸé›¾ę¶²ä½“å¼¹ę€§åŠ›å¾®åˆ†ęØ”ę‹Ÿ | å‡ŗē§Ÿč½¦å¾€čæ”é€Ÿåŗ¦å¾®åˆ†č®”ē®—
          • 🄭C++和Pythoné€šäæ”å¼•ę–‡é“č·Æē¤¾čÆ„ē”µå•†å¤§č§„ęØ”č”Œäøŗå›¾ē»“ęž„ę•°ę®ęØ”åž‹
          • 🄭Pythonč®”ē®—å’ŒåÆč§†åŒ–ēŗæę€§å’Œéžēŗæę€§ē»Ÿč®”é—®é¢˜
          • 🄭Pythonäø‰ē»“ä½“ē“ åŒ–ē½‘ę ¼å’Œē‚¹äŗ‘č®”ē®—
          • 🄭CUDA Cppę­£ē”µå­å‘å°„ę–­å±‚ę‰«ęä»Ŗę ”å‡†å’Œå›¾åƒé‡å»ŗā€”č’™ē‰¹å”ę“›3Dä¼Šč¾›ęØ”åž‹
          • 🄭CUDA Cppå¹¶č”Œč®”ē®—äŗŒē»“å’Œäø‰ē»“ē½‘ę ¼
          • 🄭NetworkX(Python)ē½‘ē»œåˆ†ęžå›¾č®ŗę•°å­¦(线性代数-ē»Ÿč®”ęŽØē†)
          • 🄭Python和NetworkXęœ‰å‘å›¾č®”ē®—čŠ‚ē‚¹ę¬§å‡ é‡Œå¾·č·ē¦»ęœ€ēŸ­č·Æå¾„
          • šŸ„­č·ē¦»ēŸ©é˜µč·Æå¾„ä¼˜åŒ–Python Dijkstra(čæŖę°ę–Æē‰¹ę‹‰)ē®—ę³•å’Œå†²ēŖé©±åŠØå­å„å­¦ä¹ 
          • 🄭Pythonå”å°”ę›¼ę»¤ę³¢å™ØOpenCVč·ŸčøŖå’Œé¢„ęµ‹ē‰©ä½“ēš„č½Øčæ¹
          • 🄭Juliaę¦‚ēŽ‡åˆ†åøƒå’Œē»Ÿč®”ęŽØē†
          • 🄭PLECSåˆ†ę®µēŗæę€§ē”µč·Æä»æēœŸé”‚ē¦»å­ē”µę± å»ŗęØ”åˆ†ęž
          • 🄭PLECSåˆ†ę®µēŗæę€§ē”µč·Æä»æēœŸē”µåŠ›ē”µå­č½¬ę¢å™Ø
          • šŸ„­ēŸ¢é‡å›¾åˆ†ęžå’ŒPLECSåˆ†ę®µēŗæę€§ē”µč·Æä»æēœŸåŸŗäŗŽęØ”åž‹ēš„ę‰­ēŸ©ęŽ§åˆ¶å™Øē”µåŠ›é©±åŠØ
          • 🄭MATLAB和PLECSåˆ†ę®µēŗæę€§ē”µč·Æä»æēœŸē”µåŠ›é©±åŠØ
          • 🄭Pythonęž„å»ŗē»Ÿč®”å­¦é€»č¾‘
          • 🄭LabVIEWę‰«ęęˆåƒęˆ–åŒę­„ęØ”ę‹Ÿē”µåŽ‹ē”Ÿęˆå’Œę•°ę®é‡‡é›†
          • 🄭LabVIEWę•°ę®é‡‡é›†
          • 🄭CUDA(C)和PyCUDA(Python) GPU加速OpenCV视觉
          • 🄭MATLABę»¤ę³¢ē®—ę³•å’ŒLabVIEWåæƒē”µå›¾čÆŠę–­ē³»ē»Ÿ
        • šŸˆęŒ‡ē‚¹čæ·ę“„ | Brief
Powered by GitBook
On this page

Was this helpful?

  1. Interdisciplinary Perspective-å­¦éš›ēš„č¦–ē‚¹
  2. Multifaceted Viewpoint

The Omega Function in Action plus AI Reasoning

PreviousStructured Robotics plus AI ReasoningNextMathematical Finance and Computational Methods plus AI Reasoning

Last updated 2 months ago

Was this helpful?

The Wright ω function, or omega function, solves the equation ωeω=z\omega e^\omega=zωeω=z, revealing connections across diverse fields. It provides analytical solutions for delay differential equations, crucial for modeling systems with memory. In number theory, it aids in analyzing Bell numbers, and it appears in special functions' expansions. Physics utilizes it in quantum mechanics and heat transfer, while biology applies it to enzyme kinetics. Its ability to unify seemingly disparate areas highlights mathematics' interconnectedness. Though less known, its impact is significant, demonstrating the power of mathematical abstraction in revealing hidden relationships.

šŸµļø
šŸµļø
šŸµļø