🍠Python(C++)大尺度分层边值时变图统计推理并行算法
🎯要点
🎯分层结构制定生成模型 | 🎯贝叶斯模型选择程序 | 🎯分层结构图的信息性 | 🎯分层模型适应实值边协变量的网络 | 🎯分层模型适应时变网络,划分层对应于检测变化点 | 🎯定义两种版本随机块模型:🖊具有边缘协变量模型概率分布,分层图总似然 | 🖊独立分层模型分层图数学似然计算 | 🎯推理算法:大图形尺度并行计算算法,过滤暂时被遮蔽的节点和边
📜分层图算法和统计推理用例
📜C++和R穿刺针吸活检肿瘤算法模型模拟和进化动力学量化差异模型
📜Python和MATLAB网络尺度结构和幂律度大型图生成式模型算法
🍪语言内容分比
🍇Python交通图模拟
假设我们的业务正在以惊人的速度增长。我们希望通过在 G.nodes 代表的当地城镇之一张贴广告牌来扩大我们的客户群。为了最大限度地提高广告牌的浏览量,我们将选择交通最繁忙的城镇。直观地说,交通量是由每天经过城镇的汽车数量决定的。我们可以根据预期的每日交通量对 G.nodes 中的 31 个城镇进行排序,使用简单的建模,我们可以从城镇之间的道路网络预测交通流量。
我们需要一种根据预期流量对城镇进行排名的方法。简单来说,我们可以简单地计算每个城镇的入站道路数:拥有五条道路的城镇可以接收来自五个不同方向的交通,而只有一条道路的城镇的交通流量则更为有限。节点的入度是指向节点的有向边的数量。但是,与网站图不同,我们的道路网络是无向的:入站边和出站边之间没有区别。因此,节点的入度和出度之间没有区别;这两个值相等,因此无向图中节点的边数简称为节点的度。我们可以通过对图的邻接矩阵的第 i 列求和来计算任何节点 i 的度,或者我们可以通过运行 len(G.nodes[i]) 来测量度。或者,我们可以通过调用 G.degree(i) 来利用 NetworkX 度方法。在这里,我们利用所有这些技术来计算经过 0 号镇的道路数量。
计算单个节点的度
使用节点的度数,我们根据重要性对节点进行排序。在图论中,任何衡量节点重要性的指标通常称为节点中心性,而根据节点度数对重要性进行排序则称为中心度。现在,我们选择 G 中中心度最高的节点:这个中心节点将作为我们广告牌位置的初始选择。
使用中心度选择中心节点
镇 3 是我们最中心的城镇。道路将其连接到九个不同的城镇和三个不同的县。镇 3 与第二中心城镇相比如何?我们将通过输出 G 中第二高的度来快速检查。
选择中心度第二高的节点
城镇 12 有 8 条连接道路,仅落后城镇 3 一条道路。如果这两个城镇的度数相等,我们会怎么做?在图 中,我们看到一条连接城镇 3 和城镇 9 的道路。假设这条道路因失修而关闭。关闭需要移除 G 中的一条边。运行 G.remove(3, 9) 会移除节点 3 和 9 之间的边,因此城镇 3 的度数会变为与城镇 12 的度数相等。网络还发生了其他重要的结构变化。在这里,我们将这些变化可视化
从最中心的节点移除一条边
模拟单车随机路线
使用 20,000 辆汽车模拟交通
检查 3 号镇的交通情况
将客流量计数转换为概率
根据我们的随机模拟,我们将有 5.1% 的时间到达 12 号镇,而只有 4.7% 的时间到达 3 号镇。因此,表明 12 号镇比 3 号镇更靠近中心。
Last updated
Was this helpful?
