How is the gravitational field calculated from the potential?

The gravitational field (acceleration) gg is the negative gradient of the potential ϕ:g=ϕ\phi: g=-\nabla \phi. The i-th component is:

gi=ϕxi=xi(GMr)=GMxi(r1)g^i=-\frac{\partial \phi}{\partial x^i}=-\frac{\partial}{\partial x^i}\left(-\frac{G M}{r}\right)=G M \frac{\partial}{\partial x^i}\left(r^{-1}\right)

Using the chain rule rx2=xir\frac{\partial r}{\partial x^2}=\frac{x^i}{r}, the derivative is:

gi=GM(1r2)rxi=GM(1r2)xir=GMxir3g^i=G M\left(-\frac{1}{r^2}\right) \frac{\partial r}{\partial x^i}=G M\left(-\frac{1}{r^2}\right) \frac{x^i}{r}=-\frac{G M x^i}{r^3}

In vector form, g=GMr2r^g=-\frac{G M}{r^2} \hat{r}, which is the standard Newtonian gravitational field.

Brief audio

Last updated

Was this helpful?