What is the final expression for the tensor product when computed in terms of the magnetic field com

What is the final expression for the tensor product when computed in terms of the magnetic field components?

The final expression for the tensor product FijFjk\mathbf{F}{ij} \mathbf{F}{jk} in terms of the magnetic field components BiB_i is: FijFjk=B2δikBiBk\mathbf{F}{ij} \mathbf{F}{jk} = B^2 \delta_{ik} - B_i B_k

Where:

  • Fij\mathbf{F}{ij} is the magnetic field tensor, defined as Fij=ϵijkBk\mathbf{F}{ij} = \epsilon_{ijk} B_k.

  • BiB_i and BkB_k are the components of the magnetic field vector B\mathbf{B}.

  • B2B^2 is the magnitude squared of the magnetic field, B2=BmBmB^2 = B_m B_m (summation over mm).

  • δik\delta_{ik} is the Kronecker delta, which is 1 if i=ki=k and 0 if iki \neq k.

Derivation

The result is derived using the definition of the magnetic field tensor and the vector identity for the product of two Levi-Civita symbols.

  1. Substitute the definition Fij=ϵijmBm\mathbf{F}{ij} = \epsilon{ijm} B_m (using mm as a dummy index for the first F\mathbf{F}) and Fjk=ϵjklBl\mathbf{F}{jk} = \epsilon{jkl} B_l (using ll for the second F\mathbf{F}):

    FijFjk=(ϵijmBm)(ϵjklBl)=BmBl(ϵijmϵjkl) \mathbf{F}{ij} \mathbf{F}{jk} = (\epsilon_{ijm} B_m) (\epsilon_{jkl} B_l) = B_m B_l (\epsilon_{ijm} \epsilon_{jkl})

  2. Rearrange the Levi-Civita symbols to group the repeated summation index jj:

    ϵjkl=ϵkjl \epsilon_{jkl} = -\epsilon_{kjl}

    FijFjk=BmBl(ϵijmϵkjl) \mathbf{F}{ij} \mathbf{F}{jk} = - B_m B_l (\epsilon_{ijm} \epsilon_{kjl})

  3. Use the ϵδ\epsilon-\delta identity: ϵabcϵdbc=δadδcbδcbδabδdcδcb\epsilon_{abc} \epsilon_{dbc} = \delta_{ad} \delta_{cb} \delta_{cb} - \delta_{ab} \delta_{dc} \delta_{cb}. A simpler form for the expression ϵijmϵkjl\epsilon_{ijm} \epsilon_{kjl} (with summation over jj) is:

    ϵijmϵkjl=δikδmlδilδmk \epsilon_{ijm} \epsilon_{kjl} = \delta_{ik} \delta_{ml} - \delta_{il} \delta_{mk}

Brief audio

Last updated

Was this helpful?