What are the full steps to derive the expression for Young's modulus from the constitutive equations

What are the full steps to derive the expression for Young's modulus from the constitutive equations and the definition of bulk modulus and shear modulus?

This derivation expresses Young's Modulus (EE) in terms of the Bulk Modulus (KK) and Shear Modulus (GG). The process involves combining two fundamental sets of constitutive equations: the relationship between stress (σij\sigma_{ij}) and strain (ϵij\epsilon_{ij}) using KK and GG, and the same relationship using $E$ and Poisson's ratio (ν\nu).

Initial Constitutive Equations

We begin with the general equations for an isotropic elastic material:

  1. Stress in terms of Bulk Modulus (KK) and Shear Modulus (GG):

    σij=Kϵkkδij+2Gκij(Eq. 1) \sigma_{ij} = K \epsilon_{kk} \delta_{ij} + 2 G \kappa_{ij} \quad \text{(Eq. 1)}

    where:

    • ϵkk=ϵ11+ϵ22+ϵ33\epsilon_{kk} = \epsilon_{11} + \epsilon_{22} + \epsilon_{33} is the volumetric strain (trace of the strain tensor).

    • κij=ϵij13ϵkkδij\kappa_{ij} = \epsilon_{ij} - \frac{1}{3} \epsilon_{kk} \delta_{ij} is the shear strain (deviatoric strain).

  2. Strain in terms of Young's Modulus (EE) and Poisson's Ratio (ν\nu):

    ϵij=1E[(1+ν)σijνσkkδij](Eq. 2) \epsilon_{ij} = \frac{1}{E} \left[ (1 + \nu) \sigma_{ij} - \nu \sigma_{kk} \delta_{ij} \right] \quad \text{(Eq. 2)}

    where σkk=σ11+σ22+σ33\sigma_{kk} = \sigma_{11} + \sigma_{22} + \sigma_{33} is the hydrostatic stress (trace of the stress tensor).

Brief audio

Last updated

Was this helpful?