Is the centrifugal force tensor symmetric?

Yes, the tensor TijT^{i j} is symmetric. This is because the indices can be swapped: Tij=m(ωiωjω2δij)T^{i j}=m\left(\omega^i \omega^j-\omega^2 \delta^{i j}\right) and Tji=m(ωjωiω2δji)T^{j i}=m\left(\omega^j \omega^i-\omega^2 \delta^{j i}\right), and since ωiωj=ωjωi\omega^i \omega^j=\omega^j \omega^i and δij=δji\delta^{i j}=\delta^{j i}, we have Tij=TjiT^{i j}=T^{j i}.

Brief audio

Last updated

Was this helpful?