What is the expression for the tidal tensor outside a spherical mass distribution?

The tidal tensor Tji=2ϕxixj=gixjT_j^i=-\frac{\partial^2 \phi}{\partial x^i \partial x^j}=\frac{\partial g^i}{\partial x^j} for the potential ϕ=GM/r\phi=-G M / r is calculated as follows (as shown in your document):

  • Off-Diagonal Elements ( iji \neq j ):

    Tji=xj(GMxir3)=GMxi(3xjr5)=3GMxixjr5T_j^i=\frac{\partial}{\partial x^j}\left(-\frac{G M x^i}{r^3}\right)=-G M x^i\left(-3 \frac{x^j}{r^5}\right)=\frac{3 G M x^i x^j}{r^5}

  • Diagonal Elements (i=j) :

    Tii=xi(GMxir3)=GM[3(xi)2r2r5]=GM[3(xi)2r51r3]T_i^i=\frac{\partial}{\partial x^i}\left(-\frac{G M x^i}{r^3}\right)=G M\left[\frac{3\left(x^i\right)^2-r^2}{r^5}\right]=G M\left[\frac{3\left(x^i\right)^2}{r^5}-\frac{1}{r^3}\right]

The full tensor TijT_{i j} can be compactly written as:

Tij=GM(3xixjr5δijr3)T_{i j}=G M\left(\frac{3 x^i x^j}{r^5}-\frac{\delta_{i j}}{r^3}\right)

where δij\delta_{i j} is the Kronecker delta (equal to 1 if i=j and 0 if iji \neq j ).

The full tensor is defined by two terms: a stretching component and a compression/squeezing component.

Brief audio

Last updated

Was this helpful?