🎯运动功能:1 m / s上台阶、站立平衡、1 m / s行走、坐椅子、5 m / s跑步、1 m / s爬行、穿越森林、取物、穿越迷宫、1 m / s上滑梯、5 m / s跨栏 | 🎯小范围静态:桌上用勺子、开窗户、桌上插入物品、厨房动作、推动桌上物品、打开柜子抽屉或门、书架取书、玩魔方 | 🎯小范围动态:跳高、举重、投篮、搬运货车物品、开门入室 | 🎯机器人机体主功能布局:感受关节角度和速度和物体姿态和速度 | 🎯全身400多个触觉感应,提供三维数据 | 🎯实验确定指定目标关节位置控制频率
classCritic(nn.Module):def__init__(self,input_size,hidden_size,output_size):super(Critic, self).__init__() self.linear1 = nn.Linear(input_size, hidden_size) self.linear2 = nn.Linear(hidden_size, hidden_size) self.linear3 = nn.Linear(hidden_size, output_size) defforward(self,state,action):""" Params state and actions are torch tensors """ x = torch.cat([state, action], 1) x = F.relu(self.linear1(x)) x = F.relu(self.linear2(x)) x = self.linear3(x) return x classActor(nn.Module):def__init__(self,input_size,hidden_size,output_size,learning_rate=3e-4):super(Actor, self).__init__() self.linear1 = nn.Linear(input_size, hidden_size) self.linear2 = nn.Linear(hidden_size, hidden_size) self.linear3 = nn.Linear(hidden_size, output_size)defforward(self,state):""" Param state is a torch tensor """ x = F.relu(self.linear1(state)) x = F.relu(self.linear2(x)) x = torch.tanh(self.linear3(x)) return x