其中 \Omega 是样本空间或所有可能的结果,数学 F 是西格玛代数,其中每个集合包含零个或多个可能的结果,P 是实现结果的概率。我们定义一个带有索引 t(代表时间)的函数,将集合 T 中的变量映射到状态空间 S 中的随机变量,或者:
Xt:T→S
我们将看到的第一个基本过程是随机游走。 它被定义为由没有规则决定其发展的步骤所创建的路径。 “随机游走”一词由数学家 Karl Pearson(1857 - 1936)于 1905 年创造。该过程可以表示为一维或多维。金融领域有许多应用程序可以对股票和价格变动进行建模、赌徒的净资产、市场上人员的流动(例如 作为一些基于代理的建模)、分子和粒子的运动或基因组中基因的变化。随机游走有多种类型,如果步长遵循正态分布,则称其为高斯型。随机游走的其他变体是自交互游走、相关游走、最大熵随机游走等。
import numpy as np
import matplotlib.pyplot as plt
import random as rm
from scipy.stats import norm
import itertools
import matplotlib.patches as mpatches
np.random.seed(99)
all_walks = []
for i in range(10) :
random_walk = [0]
for x in range(100) :
step = random_walk[-1]
dice = np.random.randint(1,7)
if dice <= 2:
step = step - 1
elif dice <= 5:
step = step + 1
else:
step = step + np.random.randint(1,5)
random_walk.append(step)
all_walks.append(random_walk)
plt.plot(random_walk)
plt.show()